

Air Impacts of Shale Gas Extraction and Distribution

Chris Moore, PhD

Desert Research Institute
Division of Atmospheric Science,
Reno, NV

May 30, 2013

Outline

- Objective
- Introduction
- Well Development
- Production
- Distribution and Storage
- Conclusions

Objective

- Summarize existing and available data on air impacts of shale gas extraction and distribution for each compartment of the shale gas life cycle
- Address areas where data may be lacking

Introduction

4

- Shale gas
 development
 expected to
 increase steadily
 over next 20 years
- Led by recent improvements in drilling and hydraulic fracturing

From USEIA (2012)

Introduction – Life Cycle

- Life cycle of shale gas
- Hydraulic fracturing only a small part of the overall life cycle
- Single well can span30 50 years

Introduction – Life Cycle

Introduction - Emissions

- Methane and Ethane
- BTEX (Benzene, Toluene, Ethylbenzene and Xylenes)
- Hydrogen Sulfide
- Ozone precursors (NOx and non-methane VOCs)
- Particulate matter
- ¬ Silica

Introduction - Emissions

8

 Shale gas is projected to have similar GHG emissions to Coal and Conventional Gas

Introduction - Emissions

Introduction - Uncertainty

10

- Methane emissions have been recalculated
 - Up to 33% annual decrease
- Difference highlights in uncertainties

2012 EPA estimated CH4 emissions from Natural Gas Systems (Tg CO, Eq.)

Stage	1990	2005	2006	2007	2008	2009	2010	
Field Production	89.0	105.2	133.8	117.8	123.2	129.4	126.0	
Processing	18.0	14.6	14.8	15.5	16.2	17.8	17.1	
Transmission and Storage	49.2	41.4	40.9	42.5	43.3	44.7	438	
Distribution	33.4	29.3	28.3	29.4	29.9	29.1	28.5	
T otal	189.6	190.5	217.8	205.2	212.6	221.0	215.4	

2013 EPA estimated CH4 emissions from Natural Gas Systems (Tg CO, Eq.)

-15%

Difference

Stage	1990	2005	2007	2008	2009	2010	2011
Field Production	60.8	75.5	83.1	76.4	61.9	57.2	53.4
Processing	17.9	14.2	15.2	15.9	17.5	16.5	19.6
Transmission and Storag	49.2	39.5	40.8	41.2	42.4	41.6	43.8
Distribution	33.4	29.8	29.3	29.9	28.9	28.3	27.9
Total	161.3	159.0	168.4	163.4	150.7	143.6	144.7

-18%

-23%

-32%

-33%

-17%

Introduction - Uncertainty

2012 EPA estimated CH4 emissions from Natural Gas Systems (Tg CO₂ Eq.)

Stage	1990	2005	2006	2007	2008	2009	2010
Field Production	89.0	105.2	133.8	117.8	123.2	129.4	126.0
Processing	18.0	14.6	14.8	15.5	16.2	17.8	17.1
Transmission and Storage	49.2	41.4	40.9	42.5	43.3	44.7	438
Distribution	33.4	29.3	28.3	29.4	29.9	29.1	28.5
T otal	189.6	190.5	217.8	205.2	212.6	221.0	215.4

2013 EPA estimated CH4 emissions from Natural Gas Systems (Tg CO, Eq.)

			_					
Stage	1990	2005		2007	2008	2009	2010	2011
Field Production	60.8	75.5		83.1	76.4	61.9	57.2	53.4
Processing	17.9	14.2		15.2	15.9	17.5	16.5	19.6
Transmission and Storag	49.2	39.5		40.8	41.2	42.4	41.6	43.8
Distribution	33.4	29.8		29.3	29.9	28.9	28.3	27.9
Total	161.3	159.0		168.4	163.4	150.7	143.6	144.7
					Ť			Ť
Difference	-15%	-17%		-18%	-23%	-32%	-33%	

Introduction - Methane

12

Methane
 emissions from
 all natural gas
 systems
 highest
 anthropogenic
 input in U.S.

From USEPA (2013)

Introduction – Life Cycle Methane

Highest methane emissions during field production

2011 Methane Emissions Inventory from Natural Gas Systems (Tg CO₂ eq.)

14

Life Cycle Segments

15

Well Development

Site Preparation

- Heavy equipment is used to create roads and clear/prepare well pad site
- Generators are set up
- Emissions
 - Vehicle emissions particularly diesel
 - Coarse particulate matter increases due to increased dust from higher traffic on roads

5/30/2013

Drilling and Hydraulic Fracturing

- □ 1 5 million gallons of water hauled
- Fracking fluid and Frac Sand are used to open cracks in rock to give the gas a pathway to flow
- Emissions
 - Hydrogen Sulfide
 - Methane
 - Diesel vehicle emissions
 - Particulate matter
 - Silica

Well Sites

Photo from Pennsylvania Independent Oil and Gas Association

Well Completion

- Flowback
- Liquids unloading
 - Process where liquid is removed from the well bore and natural gas begins flowing
- Venting and flaring
- Emissions
 - Methane
 - Hydrogen sulfide
 - VOCs (including BTEX)

Case Study – Garfield County, CO

- Rural area 250 km west of Denver, CO
- Collected samples from January 2008 to November 2010 with fixed monitoring stations
- Sampled around well completion activities at 4 well pads in summer 2008 and one in summer 2010
- Evaluated risks for residents within 0.5 mile and beyond 0.5 mile from well
- Found enhanced health risks for residents living closer to well sites
- McKenzie et al. (2012) Science of the Total Environment

Other Studies

- ERG-Sage (2011)
 - City of Fort Worth Natural Gas Air Quality Study conducted for 2 months at eight sites
 - No pollutants including 59 VOCs, 11 carbonyls, and methane were found to exceed Texas air quality limits
 - 600 foot setback distances adequately protect public health
- Rodriguez and Ouyang (2013)
 - Master's thesis on air emissions from engines during hydraulic fracturing
 - Frack pump engines responsible for 83% of all equipment emissions during hydraulic fracturing operations

24

Production

Well Production

- Compressors and pumps used to bring produced gas up to surface and up to pipeline pressure
- Emissions
 - Methane
 - VOCs

On Site Processing

- Oil and water must be removed from the natural gas before entering pipelines
- Condensate tanks, separators and dehydrators are used
- Gas must be compressed and pushed through pipelines
- Emissions
 - Methane
 - Diesel / compressor emissions
 - VOCs (including BTEX)

Off Site Processing

- Gas is further pressurized for longer transport via large compressor stations
- Emissions
 - Diesel and compressor emissions
 - VOCs

Case Study – Barnett Shale

- Conducted in Wise County, TX (<100km northwest of Fort Worth)
- Included 2 preliminary phases
 - Phase I emissions from nearby gas facilities characterized (mobile measurements April 2010)
 - Phase II saturation monitoring (using passive VOC samplers) downwind of gas production areas (May 2010, one month)
- Main Conclusions
 - Main non-methane VOC emissions from condensate tanks were ethane, n-butane, iso-butane, iso-pentane, and n-pentane
 - BTEX only accounted for 0.1-0.2% of non-methane VOC emissions
 - Exponential decrease in downwind VOC concentrations with distance from well site and condensate tank emissions from tank vents due to dispersion
- Zielinska et al (2011)

Condensate Tanks and Compressors

Case Study – Barnett Shale

30

Sum of Measured Hydrocarbons

Case Study – Barnett Shale

Other Studies

- Gilman et al. (2013)
 - 55 ± 18% of VOC-OH reactivity attributable to oil and natural gas production signatures in northeastern CO.
- Petron et al. (2012)
 - Methane emissions from the Denver-Julesburg Basin may be underestimated by a factor of 2
- Lyman and Shorthill (2013); Edwards et al. (2013)
 - Ozone linked to oil and natural gas fields in the Utah's Uintah basin is above EPA attainment levels even in winter
- Kemball-Cook et al. (2010)
 - If development continues in the Texas/Louisiana Haynesville Shale area even at a slow rate ozone will increase to above attainment levels
- TCEQ (2013)
 - Ongoing monitoring near natural gas facilities in Texas. Synthesis analysis forthcoming

33

Distribution and Storage

Transmission, Distribution and Storage

- Estimated \$3.1 billion of natural gas lost annually in the U.S. through leaks (USEIA 2012).
- Valves and pipelines
- Compressor Stations
- Emissions
 - Methane
 - Ozone precursors

Case Study - Boston

- Mobile mapping of methane on all 785 road miles in Boston from August 18 – October 1, 2011
- Found 3356 methane leaks with direct link to natural gas
- Concentrations could exceed 15 times global background levels
- Phillips et al. (2013)

Case Study - Boston

37

Conclusions

5/30/2013

Conclusions

- Measurement data is critically lacking
- Targeted studies before, during and after drilling for all atmospheric constituents
- Determine emissions signatures from all shale gas formations/plays
- More data on surface atmosphere fluxes of methane and fugitive loss measurements in more urban areas
- Silica emissions characterization
- These steps must be taken to assure public safety in the near and distant future

References

- USEIA (2012). Annual Energy Outlook 2012 with Projections to 2035, U.S.
 Department of Energy.
- Branosky, E., A. Stevens, et al. (2012). Defining the Shale Gas Life Cycle: A Framework for Identifying and Mitigating Environmental Impacts.
 Washington, D.C.
- Howarth, R. W., R. Santoro, et al. (2011). "Methane and the greenhousegas footprint of natural gas from shale formations." Climatic Change 106(4): 679-690.
- USEPA (2012). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2010.
- USEPA (2013). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2011.
- McKenzie, L. M., Witter, R. Z., Newman, L. S. & Adgate, J. L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of the Total Environment 424, 79-87, doi:10.1016/j.scitotenv.2012.02.018 (2012).

References

- ERG-Sage. City of Fort Worth Natural Gas Air Quality Study.
 http://fortworthtexas.gov/gaswells/default.aspx?id=87074., (2011).
- Zielinska, B., Fujita, E. & Campbell, D. Monitoring of Emissions from Barnett Shale Natural Gas Production Facilities for Population Exposure Assessment. Final Report to the National Urban Air Toxics Research Center. https://sph.uth.tmc.edu/mleland/attachments/DRI-Barnett%20Report%2019%20Final.pdf. (2011).
- Gilman, J. B., Lerner, B. M., Kuster, W. C. & de Gouw, J. A. Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado. *Environ Sci Technol* 47, 1297-1305, doi:10.1021/Es304119a (2013).
- Petron, G. et al. Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. *Journal of Geophysical Research-Atmospheres* 117, doi:10.1029/2011jd016360 (2012).

References

- Lyman, S. & Shorthill, H. 2012 Uintah Basin Winter Ozone and Air Quality Study. (2013).
- Edwards, P. M. et al. Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmos. Chem. Phys. Discuss. 13, 7503-7552, doi:10.5194/acpd-13-7503-2013 (2013).
- Kemball-Cook, S. et al. Ozone Impacts of Natural Gas Development in the Haynesville Shale. Environ Sci Technol 44, 9357-9363, doi:10.1021/Es1021137 (2010).
- TCEQ. Sampling Results Near Oil and Natural Gas Facilities by County.
 http://www.tceq.texas.gov/toxicology/barnettshale/samplingresults. (2013).
- Phillips, N. G. et al. Mapping urban pipeline leaks: Methane leaks across Boston. Environmental Pollution 173, 1-4, doi:10.1016/j.envpol.2012.11.003 (2013).