Skip to Main Content
The National Academies of Sciences, Engineering and Medicine
Air Force Studies Board
Current Activities



Owning the Technical Baseline for Acquisition Programs in the U.S. Air Force: A Workshop Report (2015)


The U.S. Air Force has experienced many acquisition program failures - cost overruns, schedule delays, system performance problems, and sustainability concerns - over program lifetimes.  A key contributing factor is the lack of sufficient technical knowledge within the Air Force concerning the systems being acquired to ensure success. To examine this issue, the Assistant Secretary of the Air Force for Acquisition requested that the Air Force Studies Board of the National Research Council undertake a workshop to identify the essential elements of the technical baseline - data and information to establish, trade-off, verify, change, accept, and sustain functional capabilities, design characteristics, affordability, schedule, and quantified performance parameters at the chosen level of the system hierarchy - that would benefit from realignment under Air Force or government ownership, and the value to the Air Force of regaining ownership under its design capture process of the future.  Over the course of three workshops from November 2014 through January 2015, presenters and participants identified the barriers that must be addressed for the Air Force to regain technical baseline control to include workforce, policy and process, funding, culture, contracts, and other factors and provided a terms of reference for a possible follow-on study to explore the issues and make recommendations required to implement and institutionalize the technical baseline concept. Owning the Technical Baseline for Acquisition Program in the U.S. Air Force summarizes the presentations and discussion of the three workshops.

Opportunities for the Employment of Simulation in U.S. Air Force Training Environments: A Workshop Report (2015)


Simulators currently provide an alternative to aircraft when it comes to training requirements.  Current technical issues related to simulation for training include simulation fidelity and multi-level security, among others, which will need to be addressed in order for the Air Force to take full advantage of this technology.  This workshop held in November, 2014 examined the current status of simulation training, alternative uses, current and future technologies, and how the combination of simulation and live training can improve aircrew training.  The scope of the workshop focused on technologies and practices that could be applicable to high-end aircraft simulations.

U.S. Air Force Strategic Deterrence Analytic Capabilities: An Assessment of Tools, Methods, and Approaches for the 21st Century Security Environment (2014)


U.S. Air Force Strategic Deterrence Analytic Capabilities identifies the broad analytic issues and factors that must be considered in seeking nuclear deterrence of adversaries and assurance of allies in the 21st century.  This report describes and assesses tools, methods - including behavioral science-based methods - and approaches for improving the understanding of how nuclear deterrence and assurance work or may fail in the 21st century and the extent to which such failures might be averted or mitigated by the proper choice of nuclear systems, technological capabilities, postures, and concepts of operation of American nuclear forces.  The report recommends criteria and framework for validating the tools, methods, and approaches and for identifying those most promising for Air Force usage.

Development Planning A Strategic Approach to Future Air Force Capabilities (2014)


Development Planning provides recommendations to improve development planning for near-term acquisition projects, concepts not quite ready for acquisition, corporate strategic plans, and training of acquisition personnel. This report reviews past uses of development planning by the Air Force, and offers an organization construct that will help the Ar Force across its core functions. Developmental planning can provide the Air Force leadership with a tool to answer the critical question, Over the next 20 years in 5-year increments, what capability gaps will the Air Force have that must be filled? Development planning will also provide for development of the workforce skills needed to think strategically and to define and close the capability gap. This report describes what development planing could be and should be for the Air Force.


Energy Reduction at U.S. Air Force Facilities Using Industrial Processes: A Workshop Summary (2013)


The Department of Defense (DoD) is the largest consumer of energy in the federal government. In turn, the U.S. Air Force is the largest consumer of energy in the DoD, with a total annual energy expenditure of around $10 billion. Approximately 84 percent of Air Force energy use involves liquid fuel consumed in aviation whereas approximately 12 percent is energy (primarily electricity) used in facilities on the ground. This workshop was concerned primarily with opportunities to reduce energy consumption within Air Force facilities that employ energy intensive industrial processes—for example, assembly/disassembly, painting, metal working, and operation of radar facilities—such as those that occur in the maintenance depots and testing facilities. Air Force efforts to reduce energy consumption are driven largely by external goals and mandates derived from Congressional legislation and executive orders. To date, these goals and mandates have targeted the energy used at the building or facility level rather than in specific industrial processes.

In response to a request from the Deputy Assistant Secretary of the Air Force for Energy and the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council, under the auspices of the Air Force Studies Board, formed the Committee on Energy Reduction at U.S. Air Force Facilities Using Industrial Processes: A Workshop. The terms of reference called for a committee to plan and convene one 3 day public workshop to discuss: (1) what are the current industrial processes that are least efficient and most cost ineffective? (2) what are best practices in comparable facilities for comparable processes to achieve energy efficiency? (3) what are the potential applications for the best practices to be found in comparable facilities for comparable processes to achieve energy efficiency? (4) what are constraints and considerations that might limit applicability to Air Force facilities and processes over the next ten year implementation time frame? (5) what are the costs and paybacks from implementation of the best practices? (6) what will be a proposed resulting scheme of priorities for study and implementation of the identified best practices? (7) what does a holistic representation of energy and water consumption look like within operations and maintenance?


U.S. Air Force Strategic Deterrence Capabilities in the 21st Century Security Environment: A Workshop Summary (2013)


Changes in the 21st century security environment require new analytic approaches to support strategic deterrence. Because current adversaries may be deterred from the use of nuclear weapons differently than were Cold War adversaries, the Air Force needs an analytic process and tools that can help determine those Air Force capabilities that will successfully deter or defeat these new nuclear-armed adversaries and assure U.S. allies. While some analytic tools are available, a coherent approach for their use in developing strategy and policy appears to be lacking. Without a coherent analytic approach that addresses the nuances of today's security environment, Air Force views of its strategic deterrence needs may not be understood or accepted by the appropriate decision makers.

A coherent approach will support Air Force decisions about its strategic force priorities and needs, deter actual or potential adversaries, and assure U.S. allies. In this context, the Air Force in 2012 requested that the Air Force Studies Board of the National Research Council undertake a workshop to bring together national experts to discuss current challenges relating strategic deterrence and potential new tools and methods that the Air Force might leverage in its strategic deterrence mission.

The workshop consisted of two 3-day sessions held in Washington, DC on September 26-28, 2012 and January 29-31, 2013 and was attended by a very diverse set of participants with expertise in strategic deterrence and a range of analytic tools of potential interest to the Air Force. U.S. Air Force Strategic Deterrence Capabilities in the 21st Century Security Environment summarizes this workshop.



Zero-Sustainment Aircraft for the U.S. Air Force: A Workshop Summary (2013)


Overall Air Force weapon system sustainment (WSS) costs are growing at more than 4 percent per year, while budgets have remained essentially flat. The cost growth is due partly to aging of the aircraft fleet, and partly to the cost of supporting higher-performance aircraft and new capabilities provided by more complex and sophisticated systems, such as the latest intelligence, surveillance, and reconnaissance (ISR) platforms. Furthermore, the expectation for the foreseeable future is that sustainment budgets are likely to decrease, so that the gap between budgets and sustainment needs will likely continue to grow wider. Most observers accept that the Air Force will have to adopt new approaches to WSS if it is going to address this problem and remain capable of carrying out its missions.


In this context, the original intent of this 3-day workshop was to focus on ways that science and technology (S&T) could help the Air Force reduce sustainment costs. However, as the workshop evolved, the discussions focused more and more on Air Force leadership, management authority, and culture as the more critical factors that need to change in order to solve sustainment problems. Many participants felt that while S&T investments could certainly help--particularly if applied in the early stages ("to the left") of the product life cycle--adopting a transformational management approach that defines the user-driven goals of the enterprise, empowers people to achieve them, and holds them accountable, down to the shop level. Several workshop participants urged Air Force leaders to start the process now, even though it will take years to percolate down through the entire organization. These sustainment concerns are not new and have been studied extensively, including recent reports from the National Research Council's Air Force Studies Board and the Air Force Scientific Advisory Board.


Capability Planning and Analysis to Optimize Air Force Intelligence, Surveillance, and Reconnaissance Investments (2012)


Intelligence, surveillance, and reconnaissance (ISR) capabilities have expanded situation awareness for U.S. forces, provided for more precise combat effects, and enabled better decision making both during conflicts and in peacetime, and reliance on ISR capabilities is expected to increase in the future. ISR capabilities are critical to 3 of the 12 Service Core Functions of the U.S. Air Force: namely, Global Integrated ISR (GIISR) and the ISR components of Cyberspace Superiority and Space Superiority, and contribute to all others.


In response to a request from the Air Force for ISR and the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council formed the Committee on Examination of the Air Force Intelligence, Surveillance, and Reconnaissance (ISR) Capability Planning and Analysis (CP&A) Process. In this report, the committee reviews the current approach to the Air Force corporate planning and programming process for ISR capability generation; examines carious analytical methods, processes, and models for large-scale, complex domains like ISR; and identifies the best practices for the Air Force.


In Capability Planning and Analysis to Optimize Air Force Intelligence, Surveillance, and Reconnaissance Investments, the current approach is analyzed and the best practices for the Air Force corporate planning and programming processed for ISR are recommended. This report also recommends improvements and changes to existing analytical tools, methods, roles and responsibilities, and organization and management that would be required to ensure the Air Force corporate planning and programming process for ISR is successful in addressing all Joint, National, and Coalition partner's needs.

2011 AFSB Aircraft Sustainment

Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and its Strategies to Meet Those Needs (2011)


The ability of the United States Air Force (USAF) to keep its aircraft operating at an acceptable operational tempo, in wartime and in peacetime, has been important to the Air Force since its inception. This is a much larger issue for the Air Force today, having effectively been at war for 20 years, with its aircraft becoming increasingly more expensive to operate and maintain and with military budgets certain to further decrease. The enormously complex Air Force weapon system sustainment enterprise is currently constrained on many sides by laws, policies, regulations and procedures, relationships, and organizational issues emanating from Congress, the Department of Defense (DoD), and the Air Force itself.


Against the back-drop of these stark realities, the Air Force requested the National Research Council (NRC) of the National Academies, under the auspices of the Air Force Studies Board to conduct and in-depth assessment of current and future Air Force weapon system sustainment initiatives and recommended future courses of action for consideration by the Air Force.


Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs addresses the following topics:


  • Assess current sustainment investments, infrastructure, and processes for adequacy in sustaining aging legacy systems and their support equipment.
  • Determine if any modifications in policy are required and, if so, identify them and make recommendations for changes in Air Force regulations, policies, and strategies to accomplish the sustainment goals of the Air Force.
  • Determine if any modifications in technology efforts are required and, if so, identify them and make recommendations regarding the technology efforts that should be pursued because they could make positive impacts on the sustainment of the current and future systems and equipment of the Air Force.
  • Determine if the Air Logistics Centers have the necessary resources (funding, manpower, skill sets, and technologies) and are equipped and organized to sustain legacy systems and equipment and the Air Force of tomorrow.
  • Identify and make recommendations regarding incorporating sustainability into future aircraft designs.


USAF Pre-Milestone Technology Development Report Cover_2011

Evaluation of U.S. Air Force Preacquisition Technology Development (2011)



From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition.


Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities.


Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.


2010 STEM Report Cover - Final

Examination of the U. S. Air Force's Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs in the Future and Its Strategy to Meet Those Needs (2010)


The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development, system acquisition, platform sustainment, and development of operational systems. While in the past the Air Force's technologically intensive mission has been highly attractive to individuals educated in science, technology, engineering, and mathematics (STEM) disciplines, force reductions, ongoing military operations, and budget pressures are creating new challenges for attracting and managing personnel with the needed technical skills. Assessments of recent development and acquisition process failures have identified a loss of technical competence within the Air Force (that is, in house or organic competence, as opposed to contractor support) as an underlying problem. These challenges come at a time of increased competition for technical graduates who are U.S. citizens, an aging industry and government workforce, and consolidations of the industrial base that supports military systems.


In response to a request from the Deputy Assistant Secretary of the Air Force for Science, Technology, and Engineering, the National Research Council conducted five fact-finding meetings at which senior Air Force commanders in the science and engineering, acquisition, test, operations, and logistics domains provided assessments of the adequacy of the current workforce in terms of quality and quantity.


Optimizing U.S. Air Force and Department of Defense Review of Air Force Acquisition Programs (2009)



The Department of Defense (DOD) spends over $300 billion each year to develop, produce, field and sustain weapons systems (the U.S. Air Force over $100 billion per year). DOD and Air Force acquisitions programs often experience large cost overruns and schedule delays leading to a loss in confidence in the defense acquisition system and the people who work in it. Part of the DOD and Air Force response to these problems has been to increase the number of program and technical reviews that acquisition programs must undergo. This book looks specifically at the reviews that U.S. Air Force acquisition programs are required to undergo and poses a key question: Can changes in the number, content, or sequence of reviews help Air Force program managers more successfully execute their programs?


This book concludes that, unless they do it better than they are now, Air Force and DOD attempts to address poor acquisition program performance with additional reviews will fail. This book makes five recommendations that together form a gold standard for conduct of reviews and if implemented and rigorously managed by Air Force and DOD acquisition executives can increase review effectiveness and efficiency. The bottom line is to help program managers successfully execute their programs.


Pre-Milestone A and Early-Phase Systems Engineering (2008)


The ability of U.S. military forces to field new weapons systems quickly and to contain their cost growth has declined significantly over the past few decades. There are many causes including increased complexity, funding instability, bureaucracy, and more diverse user demands, but a view that is gaining more acceptance is that better systems engineering (SE) could help shorten development time. To investigate this assertion in more detail, the US Air Force asked the NRC to examine the role that SE can play during the acquisition life cycle to address root causes of program failure especially during pre-milestone A and early program phases. This book presents an assessment of the relationship between SE and program outcome; an examination of the SE workforce; and an analysis of SE functions and guidelines. The latter includes a definition of the minimum set of SE processes that need to be accounted for during project development.

Assessment of Wingtip Modifications to Increase the Fuel Efficiency of Air Force Aircraft (2007)


The high cost of aviation fuel has resulted in increased attention by Congress and the Air Force on improving military aircraft fuel efficiency. One action considered is modification of the aircraft s wingtip by installing, for example, winglets to reduce drag. While common on commercial aircraft, such modifications have been less so on military aircraft. In an attempt to encourage greater Air Force use in this area, Congress, in H. Rept. 109-452, directed the Air Force to provide a report examining the feasibility of modifying its aircraft with winglets. To assist in this effort, the Air Force asked the NRC to evaluate its aircraft inventory and identify those aircraft that may be good candidates for winglet modifications. This report which considers other wingtip modifications in addition to winglets presents a review of wingtip modifications; an examination of previous analyses and experience with such modifications; and an assessment of wingtip modifications for various Air Force aircraft and potential investment strategies.

Improving the Efficiency of Engines for Large Nonfighter Aircraft (2007)


Because of the important national defense contribution of large, non-fighter aircraft, rapidly increasing fuel costs and increasing dependence on imported oil have triggered significant interest in increased aircraft engine efficiency by the U.S. Air Force. To help address this need, the Air Force asked the National Research Council (NRC) to examine and assess technical options for improving engine efficiency of all large non-fighter aircraft under Air Force command. This report presents a review of current Air Force fuel consumption patterns; an analysis of previous programs designed to replace aircraft engines; an examination of proposed engine modifications; an assessment of the potential impact of alternative fuels and engine science and technology programs, and an analysis of costs and funding requirements.

Review of United States Air Force and Department of Defense Aerospace Propulsion Needs (2006)

Future Air Force Needs for Survivability (2006)


A key technical issue for future Air Force systems is to improve their ability to survive. Increased use of stealth technology is proposed by many to be the major element in efforts to enhance survivability for future systems. Others, however, suggest that the high cost and maintenance required of stealth technology make increased speed potentially more productive. To help address this issue, the Air Force asked the NRC to investigate combinations of speed and stealth that would provide U.S. aircraft with a high survival capability in the 2018 period, and to identify changes in R&D plans to enable such aircraft. This report presents a review of stealth technology development; a discussion of possible future missions and threats; an analysis of the technical feasibility for achieving various levels of stealth and different speeds by 2018 and of relevant near-term R&D needs and priorities; and observations about the utility of speed and stealth trade-offs against evolving threats.

2001_Review of Future US Aerospace Infrastructure & Engr Disciplines_USAF_DOD

Review of the Future of the U.S. Aerospace Infrastructure and Aerospace Engineering Disciplines to Meet the Needs of the Air Force and the Department of Defense (2001)



Comments about the content of this Web site should be directed to  Joan Fuller, the Director of the Air Force Studies Board of the National Academies.