Thursday, October 2, 2014
Division on Engineering and Physical Sciences The National Academies
National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Boards and Committees
- Contact DEPS Staff
- Our Mission
- DEPS FAQ
- Current Projects
Energy
2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

book coverTransitions to Alternative Transportation Technologies--Plug-in Hybrid Electric Vehicles   (BEES)
Released 2010-04-29

The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. Transitions to Alternative Transportation Technologies--Plug-in Hybrid Electric Vehicles builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.

book coverReal Prospects for Energy Efficiency in the United States   (NAS ,NAE)
Released 2010-06-10

America's economy and lifestyles have been shaped by the low prices and availability of energy. In the last decade, however, the prices of oil, natural gas, and coal have increased dramatically, leaving consumers and the industrial and service sectors looking for ways to reduce energy use. To achieve greater energy efficiency, we need technology, more informed consumers and producers, and investments in more energy-efficient industrial processes, businesses, residences, and transportation. As part of the America's Energy Future project, Real Prospects for Energy Efficiency in the United States examines the potential for reducing energy demand through improving efficiency by using existing technologies, technologies developed but not yet utilized widely, and prospective technologies. The book evaluates technologies based on their estimated times to initial commercial deployment, and provides an analysis of costs, barriers, and research needs. This quantitative characterization of technologies will guide policy makers toward planning the future of energy use in America. This book will also have much to offer to industry leaders, investors, environmentalists, and others looking for a practical diagnosis of energy efficiency possibilities.

book coverAmerica's Energy Future:Technology and Transformation: Summary Edition   (NAS ,NAE ,NRC)
Released 2009-12-14

Energy production and use touch our lives in countless ways. We are reminded of the cost of energy every time we fill up at the gas pump, pay an electricity bill, or purchase an airline ticket. Energy use also has important indirect impacts, not all of which are reflected in current energy prices: depletion of natural resources, degradation of the environment, and threats to national security arising from a growing dependence on geopolitically unstable regions for some of our energy supplies. These indirect impacts could increase in the future if the demand for energy rises faster than available energy supplies. Our nation's challenge is to develop an energy portfolio that reduces these impacts while providing sufficient and affordable energy supplies to sustain our future economic prosperity. The United States has enormous economic and intellectual resources that can be brought to bear on these challenges through a sustained national effort in the decades ahead. America's Energy Future is intended to inform the development of wise energy policies by fostering a better understanding of technological options for increasing energy supplies and improving the efficiency of energy use. This summary edition of the book will also be a useful resource for professionals working in the energy industry or involved in advocacy and researchers and academics in energy-related fields of study. America's Energy Future examines the deployment potential, costs, barriers, and impacts of energy supply and end-use technologies during the next two to three decades, including energy efficiency, alternative transportation fuels, renewable energy, fossil fuel energy, and nuclear energy, as well as technologies for improving the nation's electrical transmission and distribution systems.

book coverLetter Report on the Review of the Research Program of the FreedomCAR and Fuel Partnership, Phase 3   (BEES)
Released 2009-07-16

This letter report broadly reviews the strategy and structure of the FreedomCAR and Fuel Partnership, as requested by the U.S. Department of Energy. Although the Obama Administration's focus on nearer-term technologies is on the right track, there remains a need for continued investment in longer-term, higher-risk, higher-payoff vehicle technologies that could be highly transformational with regard to reduced use of petroleum and reduced emissions. Such technologies include advanced batteries, technologies for hydrogen storage, and hydrogen/fuel cells. For researchers, contractors, and investors to be willing to make long-term commitments to these and other potentially important developing technologies, a consistent year-to-year level of support must be provided. Other recommendations within this report include incorporating a broader-scope approach to better consider total emissions and the full environmental impact of using various fuels and technologies; providing temporary reductions in cost-share requirements to ease the burden on prospective researchers; and providing direct funding to struggling automotive companies to help keep important in-house research programs active. Further suggestions are included within the body of the report.

book coverElectricity from Renewable Resources: Status, Prospects, and Impediments   (NAS)
Released 2010-03-05

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system. A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.

book coverAssessing Economic Impacts of Greenhouse Gas Mitigation: Summary of a Workshop   (BEES)
Released 2009-05-28

Many economic models exist to estimate the cost and effectiveness of different policies for reducing greenhouse gas (GHG) emissions. Some approaches incorporate rich technological detail, others emphasize the aggregate behavior of the economy and energy system, and some focus on impacts for specific sectors. Understandably, different approaches may be better positioned to provide particular types of information and may yield differing results, at times rendering decisions on future climate change emissions and research and development (R&D) policy difficult. Reliable estimates of the costs and benefits to the U.S. economy for various emissions reduction and adaptation strategies are critical to federal climate change R&D portfolio planning and investment decisions. At the request of the U.S. Department of Energy (DOE), the National Academies organized a workshop to consider these issues. The workshop, summarized in this volume, comprised three dimensions: policy, analysis, and economics. Discussions along these dimensions were meant to lead to constructive identification of gaps and opportunities. The workshop focused on (1) policymakers' informational needs; (2) models and other analytic approaches to meet these needs; (3) important economic considerations, including equity and discounting; and (4) opportunities to enhance analytical capabilities and better inform policy.

book coverReview of Site (Point-of-Use) and Full-Fuel-Cycle Measurement Approaches to DOE/EERE Building Appliance Energy-Efficiency Standards--Letter Report   (BEES)
Released 0000-00-00

Currently, the Department of Energy (DOE) sets appliance efficiency standards using primarily "site" (or point-of-use) measurements, which reflect only the energy consumed to operate the appliance. Site measurements allow consumers to compare energy efficiency among appliances, but offer no information about other energy costs involved. This congressionally mandated report from the National Research Council recommends that DOE consider moving over time to the use of a full-fuel-cycle measure of energy consumption for assessment of national and environmental impacts. Using that metric would provide the public with more comprehensive information about the impacts of energy consumption on the environment, the economy, and other national concerns. This volume discusses these matters and offers several related findings and recommendations together with supporting information.

book coverLiquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts   (NAS ,NAE ,NRC)
Released 2009-12-24

The transportation sector cannot continue on its current path: The volatility of oil prices threatens the U.S. economy, the large proportion of oil importation threatens U.S. energy security, and the massive contribution of greenhouse gases threatens the environment. The development of domestic sources of alternative transportation fuels with lower greenhouse emissions is now a national imperative. Coal and biomass are in abundant supply in the United States and can be converted to liquid fuels that can be combusted in existing and future vehicles. Their abundant supply makes them attractive candidates to provide non-oil-based liquid fuels to the U.S. transportation system. However, there are important questions about the economic viability, carbon impact, and technology status of these options. Liquid Transportation Fuels from Coal and Biomass provides a snapshot of the potential costs of liquid fuels from biomass by biochemical conversion and from biomass and coal by thermochemical conversion. Policy makers, investors, leaders in industry, the transportation sector, and others with a concern for the environment, economy, and energy security will look to this book as a roadmap to independence from foreign oil. With immediate action and sustained effort, alternative liquid fuels can be available in the 2020 time frame, if or when the nation needs them.

book coverSustainable Critical Infrastructure Systems:A Framework for Meeting 21st Century Imperatives   (BICE)
Released 2009-07-01

For the people of the United States, the 20th century was one of unprecedented population growth, economic development, and improved quality of life. The critical infrastructure systems-water, wastewater, power, transportation, and telecommunications-built in the 20th century have become so much a part of modern life that they are taken for granted. By 2030, 60 million more Americans will expect these systems to deliver essential services. Large segments and components of the nation's critical infrastructure systems are now 50 to 100 years old, and their performance and condition are deteriorating. Improvements are clearly necessary. However, approaching infrastructure renewal by continuing to use the same processes, practices, technologies, and materials that were developed in the 20th century will likely yield the same results: increasing instances of service disruptions, higher operating and repair costs, and the possibility of catastrophic, cascading failures. If the nation is to meet some of the important challenges of the 21st century, a new paradigm for the renewal of critical infrastructure systems is needed. This book discusses the essential components of this new paradigm, and outlines a framework to ensure that ongoing activities, knowledge, and technologies can be aligned and leveraged to help meet multiple national objectives.