Skip to Main Content
  Contact
 
The National Academies of Sciences, Engineering and Medicine
Division on Engineering and Physical Sciences
Division on Engineering and Physical Sciences
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Boards, Standing Committees, Roundtables/Forums
- Contact DEPS Staff
- Our Mission
- Current Projects
DEPS Reports
2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004
2017-2018 Assessment of the Army Research LaboratoryInterim Report   (ARLTAB,LAB)
Released 2018-02-21 Forthcoming/Prepublication

The National Academies of Sciences, Engineering, and Medicine's Army Research Laboratory Technical Assessment Board (ARLTAB) provides biennial assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL), focusing on ballistics sciences, human sciences, information sciences, materials sciences, and mechanical sciences. This interim report summarizes the findings of the ARLTAB for the first year of this biennial assessment; the current report addresses approximately half the portfolio for each campaign; the remainder will be assessed in 2018.

Decrypting the Encryption DebateA Framework for Decision Makers   (CSTB)
Released 2018-02-15 Forthcoming/Prepublication

Encryption protects information stored on smartphones, laptops, and other devices - in some cases by default. Encrypted communications are provided by widely used computing devices and services - such as smartphones, laptops, and messaging applications - that are used by hundreds of millions of users. Individuals, organizations, and governments rely on encryption to counter threats from a wide range of actors, including unsophisticated and sophisticated criminals, foreign intelligence agencies, and repressive governments. Encryption on its own does not solve the challenge of providing effective security for data and systems, but it is an important tool. At the same time, encryption is relied on by criminals to avoid investigation and prosecution, including criminals who may unknowingly benefit from default settings as well as those who deliberately use encryption. Thus, encryption complicates law enforcement and intelligence investigations. When communications are encrypted "end-to-end," intercepted messages cannot be understood. When a smartphone is locked and encrypted, the contents cannot be read if the phone is seized by investigators. Decrypting the Encryption Debate reviews how encryption is used, including its applications to cybersecurity; its role in protecting privacy and civil liberties; the needs of law enforcement and the intelligence community for information; technical and policy options for accessing plaintext; and the international landscape. This book describes the context in which decisions about providing authorized government agencies access to the plaintext version of encrypted information would be made and identifies and characterizes possible mechanisms and alternative means of obtaining information.

Aeronautics 2050Proceedings of a Workshop–in Brief   (ASEB)
Released 2018-02-07

The Aeronautics and Space Engineering Board (ASEB) of the National Academies of Sciences, Engineering, and Medicine organized a 1-day visioning workshop to facilitate a dialog on the historical contributions of the ASEB to development of the U.S. civil aeronautics sector, recent advances and current challenges and opportunities in civil aviation, and new directions in air travel and technology in the coming 30 years. This publication briefly summarizes the presentations and discussions from the workshop.

Testing at the Speed of LightThe State of U.S. Electronic Parts Radiation Testing Infrastructure   (NMMB)
Released 2018-02-01 Forthcoming/Prepublication

Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation’s current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.

In-Time Aviation Safety ManagementChallenges and Research for an Evolving Aviation System   (ASEB)
Released 2018-01-18 Forthcoming/Prepublication

Decades of continuous efforts to address known hazards in the national airspace system (NAS) and to respond to issues illuminated by analysis of incidents and accidents have made commercial airlines the safest mode of transportation. The task of maintaining a high level of safety for commercial airlines is complicated by the dynamic nature of the NAS. The number of flights by commercial transports is increasing; air traffic control systems and procedures are being modernized to increase the capacity and efficiency of the NAS; increasingly autonomous systems are being developed for aircraft and ground systems, and small aircraft—most notably unmanned aircraft systems—are becoming much more prevalent. As the NAS evolves to accommodate these changes, aviation safety programs will also need to evolve to ensure that changes to the NAS do not inadvertently introduce new risks. Real-time system-wide safety assurance (RSSA) is one of six focus areas for the National Aeronautics and Space Administration (NASA) aeronautics program. NASA envisions that an RSSA system would provide a continuum of information, analysis, and assessment that supports awareness and action to mitigate risks to safety. Maintaining the safety of the NAS as it evolves will require a wide range of safety systems and practices, some of which are already in place and many of which need to be developed. This report identifies challenges to establishing an RSSA system and the high-priority research that should be implemented by NASA and other interested parties in government, industry, and academia to expedite development of such a system.

Review of NASA Office of Space Science Enterprise Strategic PlanLetter Report   (SSB)
Released 2018-01-12

Thriving on Our Changing PlanetA Decadal Strategy for Earth Observation from Space   (SSB)
Released 2018-01-05 Forthcoming/Prepublication

We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities – social, economic, security, and more – that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.