Saturday, April 19, 2014
Division on Engineering and Physical Sciences The National Academies
National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Free Multimedia
- Boards and Committees
- Contact DEPS Staff
- Our Mission
- DEPS FAQ
- Current Projects
DEPS Reports
2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004
Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era   (SSB,ASEB)
Released 2011-12-30

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles--an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight--thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.

Vision and Voyages for Planetary Science in the Decade 2013-2022   (SSB)
Released 2011-12-30

In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.

Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy   (BANR,BEES)
Released 2011-12-29

In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.

Report of a Workshop on Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs for the U.S. Department of Defense and the U.S. Defense Industrial Base   (NAE)
Released 2011-12-20

Report of a Workshop on Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs for the U.S. Department of Defense and the U.S. Defense Industrial Base is the summary of a workshop held August 11, 2011, as part of an 18-month study of the issue. This book assesses the STEM capabilities that the Department of Defense (DOD) needs in order to meet its goals, objectives, and priorities; to assess whether the current DOD workforce and strategy will meet those needs; and to identify and evaluate options and recommend strategies that the department could use to help meet its future STEM needs.

A View of Global Science and Technology: Letter Report   (BGST)
Released 2011-12-07

This letter report describes the 2009-2011 activities of the Board on Global Science and Technology (BGST) and provides an initial characterization of the global science and technology landscape that the Board can use as a roadmap to develop future activities. BGST met five times between November 2009 and May 2011. Board meetings were devoted to (1) identifying national security implications of the globalization of S&T, (2) building a baseline understanding of current indicators for the U.S. posture with regard to the evolving global S&T landscape, and (3) developing a BGST engagement strategy. The letter portion of the report summarizes activities of the board in its first year, and also describes some existing approaches to identifying and/or benchmarking emerging technologies globally. It is followed by 5 appendixes which include three experimental examples of a qualitative approach to benchmarking, and brief descriptions of programs that are part of the National Academies complex, with which BGST has cooperated.

Limiting Future Collision Risk to Spacecraft:An Assessment of NASA's Meteoroid and Orbital Debris Programs   (ASEB)
Released 2011-11-16

Derelict satellites, equipment and other debris orbiting Earth (aka space junk) have been accumulating over many decades and could damage or even possibly destroy satellites and human spacecraft if they collide.This report examines NASA's efforts to understand the meteoroid and orbital debris environment, what NASA is and is not doing to mitigate the risks posed by this threat and how they can improve their programs.

Assessing Requirements for Sustained Ocean Color Research and Operations   (OSB,SSB)
Released 2011-11-15

The ocean is a fundamental component of the earth's biosphere. It covers roughly 70 percent of Earth's surface and plays a pivotal role in the cycling of life's building blocks, such as nitrogen, carbon, oxygen, and sulfur. The ocean also contributes to regulating the climate system. Most of the primary producers in the ocean comprise of microscopic plants and some bacteria; and these photosynthetic organisms (phytoplankton) form the base of the ocean's food web. Monitoring the health of the ocean and its productivity is critical to understanding and managing the ocean's essential functions and living resources. Because the ocean is so vast and difficult for humans to explore, satellite remote sensing of ocean color is currently the only way to observe and monitor the biological state of the surface ocean globally on time scales of days to decades. Ocean color measurements reveal a wealth of ecologically important characteristics including: chlorophyll concentration, the rate of phytoplankton photosynthesis, sediment transport, dispersion of pollutants, and responses of oceanic biota to long-term climate changes. Continuity of satellite ocean color data and associated climate research products are presently at significant risk for the U.S. ocean color community. Assessing Requirements for Sustained Ocean Color Research and Operations aims to identify the ocean color data needs for a broad range of end users, develop a consensus for the minimum requirements, and outline options to meet these needs on a sustained basis. The report assesses lessons learned in global ocean color remote sensing from the SeaWiFS/MODIS era to guide planning for acquisition of future global ocean color radiance data to support U.S. research and operational needs.

Review of the 21st Century Truck Partnership, Second Report   (BEES)
Released 2011-11-15

In July 2010, the National Research Council (NRC) appointed the Committee to Review the 21st Century Truck Partnership, Phase 2, to conduct an independent review of the 21st Century Truck Partnership (21CTP). The 21CTP is a cooperative research and development (R&D) partnership including four federal agencies-the U.S. Department of Energy (DOE), U.S. Department of Transportation (DOT), U.S. Department of Defense (DOD), and the U.S. Environmental Protection Agency (EPA)-and 15 industrial partners. The purpose of this Partnership is to reduce fuel consumption and emissions, increase heavy-duty vehicle safety, and support research, development, and demonstration to initiate commercially viable products and systems. This is the NRC's second report on the topic and it includes the committee's review of the Partnership as a whole, its major areas of focus, 21CTP's management and priority setting, efficient operations, and the new SuperTruck program.

Preparing for the High Frontier:The Role and Training of NASA Astronauts in the Post-Space Shuttle Era   (ASEB)
Released 2011-11-09

As the National Aeronautics and Space Administration (NASA) retires the Space Shuttle and shifts involvement in International Space Station (ISS) operations, changes in the role and requirements of NASA's Astronaut Corps will take place. At the request of NASA, the National Research Council (NRC) addressed three main questions about these changes: What should be the role and size of Johnson Space Center's (JSC) Flight Crew Operations Directorate (FCOD); what will be the requirements of astronaut training facilities; and is the Astronaut Corps' fleet of training aircraft a cost-effective means of preparing astronauts for NASA's spaceflight program? This report presents an assessment of several issues driven by these questions. This report does not address explicitly the future of human spaceflight.

Achieving High-Performance Federal Facilities: Strategies and Approaches for Transformational Change   (BICE)
Released 2011-11-07

The design, construction, operation, and retrofit of buildings is evolving in response to ever-increasing knowledge about the impact of indoor environments on people and the impact of buildings on the environment. Research has shown that the quality of indoor environments can affect the health, safety, and productivity of the people who occupy them. Buildings are also resource intensive, accounting for 40 percent of primary energy use in the United States, 12 percent of water consumption, and 60 percent of all non-industrial waste. The processes for producing electricity at power plants and delivering it for use in buildings account for 40 percent of U.S. greenhouse gas emissions. The U.S. federal government manages approximately 429,000 buildings of many types with a total square footage of 3.34 billion worldwide, of which about 80 percent is owned space. More than 30 individual departments and agencies are responsible for managing these buildings. The characteristics of each agency's portfolio of facilities are determined by its mission and its programs. In 2010, GSA's Office of Federal High-Performance Green Buildings asked the National Academies to appoint an ad hoc committee of experts to conduct a public workshop and prepare a report that identified strategies and approaches for achieving a range of objectives associated with high-performance green federal buildings. Achieving High-Performance Federal Facilities identifies examples of important initiatives taking place and available resources. The report explores how these examples could be used to help make sustainability the preferred choice at all levels of decision making. Achieving High-Performance Federal Facilities can serve as a valuable guide federal agencies with differing missions, types of facilities, and operating procedures.

Sharing the Adventure with the Public: The Value and Excitement of 'Grand Questions' of Space Science and ExplorationSummary of a Workshop   (SSB)
Released 2011-10-31

On November 8-10, 2010, the National Research Council's Space Studies Board (SSB) held a public workshop on how NASA and its associated science and exploration communities communicate with the public about major NASA activities and programs. The concept and planning of the workshop developed over a period of two years. In conjunction with the SSB, the workshop planning committee identified five "Grand Questions" in space science and exploration around which the event was organized. As outlined in the summary, the workshop concluded with sessions on communicating space research and exploration to the public.

Communicating Science and Engineering Data in the Information Age   (CNSTAT,CSTB)
Released 2011-10-31

The National Center for Science and Engineering Statistics (NCSES) of the National Science Foundation (NSF) communicates its science and engineering (S&E) information to data users in a very fluid environment that is undergoing modernization at a pace at which data producer dissemination practices, protocols, and technologies, on one hand, and user demands and capabilities, on the other, are changing faster than the agency has been able to accommodate. NCSES asked the Committee on National Statistics and the Computer Science and Telecommunications Board of the National Research Council to form a panel to review the NCSES communication and dissemination program that is concerned with the collection and distribution of information on science and engineering and to recommend future directions for the program. Communicating Science and Engineering Data in the Information Age includes recommendations to improve NCSES's dissemination program and improve data user engagement. This report includes recommendations such as NCSES's transition to a dissemination framework that emphasizes database management rather than data presentation, and that NCSES analyze the results of its initial online consumer survey and refine it over time. The implementation of the report's recommendations should be undertaken within an overall framework that accords priority to the basic quality of the data and the fundamentals of dissemination, then to significant enhancements that are achievable in the short term, while laying the groundwork for other long-term improvements.

An Interim Report on NASA's Technology Roadmap   (ASEB)
Released 2011-10-18

For the NASA to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary. NASA has developed a set of 14 draft roadmaps to guide the development of such technologies under the leadership of the NASA Office of the Chief Technologist (OcT). In this interim report, the NRC provides several initial observations that will be expanded on in the final report to be released in 2012.

Examination of the U.S. Air Force's Aircraft Sustainment Needs in the Future and Its Strategy to Meet Those Needs   (AFSB)
Released 2011-10-17

The U.S. Air Force weapon system sustainment enterprise is extremely large in terms of scope, workforce, and associated costs that amount to billions of dollars annually. In addition, budget constraints will make it more difficult for the Air Force to continue on its current wartime-like operations. This report highlights many sustainment issues and offers recommendations aimed at improving the efficiency and effectiveness of the Air Force weapon system sustainment enterprise-a process that is enormously complex and, therefore, requires a comprehensive management approach.

An Assessment of the National Institute of Standards and Technology Information Technology Laboratory: Fiscal Year 2011   (LAB)
Released 2011-10-14

Since 1959, the National Research Council (NRC), at the request of the National Institute of Standards and Technology (NIST), has annually assembled panels of experts to assess the quality and effectiveness of the NIST measurements and standards laboratories. In 2011, the NRC evaluated three of the six NIST laboratories: the Center for Nanoscale Science and Technology (CNST), the NIST Center for Neutron Research (NCNR) and the Information Technology Laboratory (ITL). Each of these was addressed individually by a separate panel of experts; this report assesses ITL.

An Assessment of the National Institute of Standards and Technology Center for Nanoscale Science and Technology: Fiscal Year 2011   (LAB)
Released 2011-10-14

Since 1959, the National Research Council (NRC), at the request of the National Institute of Standards and Technology (NIST), has annually assembled panels of experts to assess the quality and effectiveness of the NIST measurements and standards laboratories. In 2011, the NRC evaluated three of the six NIST laboratories: the Center for Nanoscale Science and Technology (CNST), the NIST Center for Neutron Research (NCNR) and the Information Technology Laboratory (ITL). Each of these was addressed individually by a separate panel of experts; this report assesses CNST.

An Assessment of the National Institute of Standards and Technology Center for Neutron Research: Fiscal Year 2011   (LAB)
Released 2011-10-14

Since 1959, the National Research Council (NRC), at the request of the National Institute of Standards and Technology (NIST), has annually assembled panels of experts to assess the quality and effectiveness of the NIST measurements and standards laboratories. In 2011, the NRC evaluated three of the six NIST laboratories: the Center for Nanoscale Science and Technology (CNST), the NIST Center for Neutron Research (NCNR) and the Information Technology Laboratory (ITL). Each of these was addressed individually by a separate panel of experts; this report assesses NCNR.

Review of the National Defense Intelligence College's Master's Degree in Science and Technology Intelligence  
Released 2011-10-14

The National Research Council (NRC) was asked by the National Defense Intelligence College (NDIC) to convene a committee to review the curriculum and syllabi for their proposed master of science degree in science and technology intelligence. The NRC was asked to review the material provided by the NDIC and offer advice and recommendations regarding the program's structure and goals of the Master of Science and Technology Intelligence (MS&TI) program. The Committee for the Review of the Master's Degree Program for Science and Technology Professionals convened in May 2011, received extensive briefings and material from the NDIC faculty and administrators, and commenced a detailed review of the material. This letter report contains the findings and recommendations of the committee. Review of the National Defense Intelligence College's Master's Degree in Science and Technology Intelligence centers on two general areas. First, the committee found that the biological sciences and systems engineering were underrepresented in the existing program structure. Secondly, the committee recommends that the NDIC faculty restructure the program and course learning objectives to focus more specifically on science and technology, with particular emphasis on the empirical measurement of student achievement. Given the dynamic and ever-changing nature of science and technology, the syllabi should continue to evolve as change occurs.

Summary of the Workshop to Identify Gaps and Possible Directions for NASA's Meteoroid and Orbital Debris Programs   (ASEB)
Released 2011-08-25

A Summary of the Workshop to Identify the Gaps and Possible Directions for NASA's Meteoroid and Orbital Debris Programs summarizes the two-day workshop held on March 9-10, 2011, where various stakeholders presented diverse perspectives on matters concerning NASA Micrometeoroid and Orbital Debris (MMOD) programs, NASA mission operators, the role and relationships of NASA MMOD programs to other federal agencies, MMOD and the commercial industry, and orbital debris retrieval and removal. The report assesses NASA's existing efforts, policies, and organizations with regard to orbital debris and micrometeoroids by creating advisory dialogue on potential opportunities for program enhancement and maintenance practices.

Report of a Workshop on the Pedagogical Aspects of Computational Thinking   (CSTB)
Released 2011-08-05

In 2008, the Computer and Information Science and Engineering Directorate of the National Science Foundation asked the National Research Council (NRC) to conduct two workshops to explore the nature of computational thinking and its cognitive and educational implications. The first workshop focused on the scope and nature of computational thinking and on articulating what "computational thinking for everyone" might mean. A report of that workshop was released in January 2010. Drawing in part on the proceedings of that workshop, Report of a Workshop of Pedagogical Aspects of Computational Thinking, summarizes the second workshop, which was held February 4-5, 2010, in Washington, D.C., and focuses on pedagogical considerations for computational thinking. This workshop was structured to gather pedagogical inputs and insights from educators who have addressed computational thinking in their work with K-12 teachers and students. It illuminates different approaches to computational thinking and explores lessons learned and best practices. Individuals with a broad range of perspectives contributed to this report. Since the workshop was not intended to result in a consensus regarding the scope and nature of computational thinking, Report of a Workshop of Pedagogical Aspects of Computational Thinking does not contain findings or recommendations.

Space Studies Board Annual Report 2010   (SSB)
Released 2011-08-01

The Space Studies Board (SSB) was established in 1958 to serve as the focus of the interests and responsibilities in space research for the National Academies. The SSB provides an independent, authoritative forum for information and advice on all aspects of space science and applications, and it serves as the focal point within the National Academies for activities on space research. It oversees advisory studies and program assessments, facilitates international research coordination, and promotes communications on space science and science policy between the research community, the federal government, and the interested public. The SSB also serves as the U.S. National Committee for the International Council for Science Committee on Space Research (COSPAR). This volume reviews the organization, activities, and reports of the SSB for the year 2010.

Opportunities in Protection Materials Science and Technology for Future Army Applications   (NMMB,BAST)
Released 2011-07-27

Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor. Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.

Ground-Based Astronomy: A Ten-Year Program  
Released 2011-07-22

Astronomy has as its domain the study of the celestial bodies-the sun, planets, stars, clouds of gas between the stars, galaxies-and undeniably the entire universe considered as a single system. Astronomy's goal is to learn the nature of these diverse objects and to relate their properties, their motions, and their distribution in space in a unified world picture; to understand the evolutionary development of the universe from the time of its formation to the present epoch of observation and beyond; and indeed to discover, if possible, its original state and its final destiny. Emphasizing astronomy as a pure science, this report presents the challenges scientists and the government face in regards to radio and optical astronomical programs. Ground-based Astronomy: A Ten-Year Program explores a balanced course for new facilities of ground-based astronomy in the next decade, and provides recommendations to create a progressive program that considers a wide spectrum of past inadequacies and future growth components. Outlining guiding principles and estimates of facility costs, Ground-based Astronomy examines present positions in research and development to further advancement of astronomy in various sectors.

Assessment of Marine and Hydrokinetic Energy Technology:Interim Letter Report   (BEES)
Released 2011-07-13

Power in ocean waves originate as wind energy that is transferred to the sea surface when wind blows over large areas of the ocean. The resulting wave field consists of a collection of waves at different frequencies traveling in various directions delivering their power to near shore areas, whereas ocean tides are a response to gravitational forces exerted by the Moon and the Sun. The limitless potential of tidal power for human use has traditionally led to proposals that employ various schemes to harness this generated power. Now, as marine and hydrokinetic resources increasingly become a part of energy regulatory, planning, and marketing activities in the United States, assessments are being conducted for future development. In particular, state-based renewable portfolio standards and federal production and investment tax credits, have led to an increased interest in the possible deployment of marine and hydrokinetic (MHK) technologies. Assessment of Marine and Hydrokinetic Energy Technology: Interim Letter Report provides an evaluation of detailed appraisals for the Department of Energy estimating the amount of extractable energy from U.S. marine and hydrokinetic resources. In order to assess the overall potential for U.S. MHK resources and technologies, this report evaluates the methodologies, technologies, and assumptions associated with the wave and tidal energy resource assessments.

Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems   (NMMB)
Released 2011-06-20

The ongoing development of military aerospace platforms requires continuous technology advances in order to provide the nation's war fighters with the desired advantage. Significant advances in the performance and efficiency of jet and rocket propulsion systems are strongly dependent on the development of lighter more durable high-temperature materials. Materials development has been significantly reduced in the United States since the early 1990s, when the Department of Defense (DOD), the military services, and industry had very active materials development activities to underpin the development of new propulsion systems. This resulted in significant improvements in all engine characteristics and established the United States in global propulsion technology. Many of the significant advances in aircraft and rocket propulsion have been enabled by improved materials and, materials manufacturing processes. To improve efficiency further, engine weight must be reduced while preserving thrust. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems examines whether current and planned U.S. efforts are sufficient to meet U.S. military needs while keeping the U.S. on the leading edge of propulsion technology. This report considers mechanisms for the timely insertion of materials in propulsion systems and how these mechanisms might be improved, and describes the general elements of research and development strategies to develop materials for future military aerospace propulsion systems. The conclusions and recommendations asserted in this report will enhance the efficiency, level of effort, and impact of DOD materials development activities.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles   (BEES)
Released 2011-06-03

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption--the amount of fuel consumed in a given driving distance--because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Assessment of Impediments to Interagency Collaboration on Space and Earth Science Missions   (SSB)
Released 2011-05-31

Through an examination of case studies, agency briefings, and existing reports, and drawing on personal knowledge and direct experience, the Committee on Assessment of Impediments to Interagency Cooperation on Space and Earth Science Missions found that candidate projects for multiagency collaboration in the development and implementation of Earth-observing or space science missions are often intrinsically complex and, therefore costly, and that a multiagency approach to developing these missions typically results in additional complexity and cost. Advocates of collaboration have sometimes underestimated the difficulties and associated costs and risks of dividing responsibility and accountability between two or more partners; they also discount the possibility that collaboration will increase the risk in meeting performance objectives. This committee's principal recommendation is that agencies should conduct Earth and space science projects independently unless: It is judged that cooperation will result in significant added scientific value to the project over what could be achieved by a single agency alone; or Unique capabilities reside within one agency that are necessary for the mission success of a project managed by another agency; or The project is intended to transfer from research to operations necessitating a change in responsibility from one agency to another during the project; or There are other compelling reasons to pursue collaboration, for example, a desire to build capacity at one of the cooperating agencies. Even when the total project cost may increase, parties may still find collaboration attractive if their share of a mission is more affordable than funding it alone. In these cases, alternatives to interdependent reliance on another government agency should be considered. For example, agencies may find that buying services from another agency or pursuing interagency coordination of spaceflight data collection is preferable to fully interdependent cooperation.

National Security Implications of Climate Change for U.S. Naval Forces   (NSB)
Released 2011-05-26

In response to the Chief of Naval Operations (CNO), the National Research Council appointed a committee operating under the auspices of the Naval Studies Board to study the national security implications of climate change for U.S. naval forces. In conducting this study, the committee found that even the most moderate current trends in climate, if continued, will present new national security challenges for the U.S. Navy, Marine Corps, and Coast Guard. While the timing, degree, and consequences of future climate change impacts remain uncertain, many changes are already underway in regions around the world, such as in the Arctic, and call for action by U.S. naval leadership in response. The terms of reference (TOR) directed that the study be based on Intergovernmental Panel on Climate Change (IPCC) scenarios and other peer-reviewed assessment. Therefore, the committee did not address the science of climate change or challenge the scenarios on which the committee's findings and recommendations are based. National Security Implications of Climate Change for U.S. Naval Forces addresses both the near- and long-term implications for U.S. naval forces in each of the four areas of the TOR, and provides corresponding findings and recommendations. This report and its conclusions are organized around six discussion areas--all presented within the context of a changing climate.

Panel Reports--New Worlds, New Horizons in Astronomy and Astrophysics   (BPA,SSB)
Released 2011-05-18

Every 10 years the National Research Council releases a survey of astronomy and astrophysics outlining priorities for the coming decade. The most recent survey, titled New Worlds, New Horizons in Astronomy and Astrophysics, provides overall priorities and recommendations for the field as a whole based on a broad and comprehensive examination of scientific opportunities, infrastructure, and organization in a national and international context. Panel Reports--New Worlds, New Horizons in Astronomy and Astrophysics is a collection of reports, each of which addresses a key sub-area of the field, prepared by specialists in that subarea, and each of which played an important role in setting overall priorities for the field. The collection, published in a single volume, includes the reports of the following panels: Cosmology and Fundamental Physics Galaxies Across Cosmic Time The Galactic Neighborhood Stars and Stellar Evolution Planetary Systems and Star Formation Electromagnetic Observations from Space Optical and Infrared Astronomy from the Ground Particle Astrophysics and Gravitation Radio, Millimeter, and Submillimeter Astronomy from the Ground The Committee for a Decadal Survey of Astronomy and Astrophysics synthesized these reports in the preparation of its prioritized recommendations for the field as a whole. These reports provide additional depth and detail in each of their respective areas. Taken together, they form an essential companion volume to New Worlds, New Horizons: A Decadal Survey of Astronomy and Astrophysics. The book of panel reports will be useful to managers of programs of research in the field of astronomy and astrophysics, the Congressional committees with jurisdiction over the agencies supporting this research, the scientific community, and the public.

NAKFI Seeing the Future with Imaging Science: Interdisciplinary Research Team Summaries  
Released 2011-05-17

Imaging science has the power to illuminate regions as remote as distant galaxies, and as close to home as our own bodies. Many of the disciplines that can benefit from imaging share common technical problems, yet researchers often develop ad hoc methods for solving individual tasks without building broader frameworks that could address many scientific problems. At the 2010 National Academies Keck Futures Initiative Conference on Imaging Science, researchers from academia, industry, and government formed 14 interdisciplinary teams created to find a common language and structure for developing new technologies, processing and recovering images, mining imaging data, and visualizing it effectively. The teams spent nine hours over two days exploring diverse challenges at the interface of science, engineering, and medicine. NAKFI Seeing the Future with Imaging Science contains the summaries written by each team. These summaries describe the problem and outline the approach taken, including what research needs to be done to understand the fundamental science behind the challenge, the proposed plan for engineering the application, the reasoning that went into it, and the benefits to society of the problem solution.

Transforming Combustion Research through Cyberinfrastructure   (BMSA,CSTB,BCST)
Released 2011-05-10

Combustion has provided society with most of its energy needs for millenia, from igniting the fires of cave dwellers to propelling the rockets that traveled to the Moon. Even in the face of climate change and the increasing availability of alternative energy sources, fossil fuels will continue to be used for many decades. However, they will likely become more expensive, and pressure to minimize undesired combustion by-products (pollutants) will likely increase. The trends in the continued use of fossil fuels and likely use of alternative combustion fuels call for more rapid development of improved combustion systems. In January 2009, the Multi-Agency Coordinating Committee on Combustion Research (MACCCR) requested that the National Research Council (NRC) conduct a study of the structure and use of a cyberinfrastructure (CI) for combustion research. The charge to the authoring committee of Transforming Combustion Research through Cyberinfrastructure was to: identify opportunities to improve combustion research through computational infrastructure (CI) and the potential benefits to applications; identify necessary CI elements and evaluate the accessibility, sustainability, and economic models for various approaches; identify CI that is needed for education in combustion science and engineering; identify human, cultural, institutional, and policy challenges and how other fields are addressing them. Transforming Combustion Research through Cyberinfrastructure also estimates the resources needed to provide stable, long-term CI for research in combustion and recommends a plan for enhanced exploitation of CI for combustion research.

2009-2010 Assessment of the Army Research Laboratory   (LAB)
Released 2011-04-21

The charge of the Army Research Laboratory Technical Assessment Board (ARLTAB) is to provide biannual assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL). The advice provided in this report focuses on technical rather than programmatic considerations. The Board is assisted by six National Research Council (NRC) panels, each of which focuses on the portion of the ARL program conducted by one of ARL's six directorates. When requested to do so by ARL, the Board also examines work that cuts across the directorates. The Board has been performing assessments of ARL since 1996. The current report summarizes its finding for the 2009-2010 period, during which 96 volunteer experts in fields of science and engineering participated in the following activities: visiting ARL annually, receiving formal presentations of technical work, examining facilities, engaging in technical discussions with ARL staff, and reviewing ARL technical materials. The Board continues to be impressed by the overall quality of ARL's technical staff and their work and applauds ARL for its clear, passionate concern for the end user of its technology--the soldier in the field--and for ARL's demonstrated mindfulness of the importance of transitioning technology to support immediate and longer-term Army needs. ARL staff also continue to expand their involvement with the wider scientific and engineering community. In general, ARL is working very well within an appropriate research and development (R&D) niche and has been demonstrating significant accomplishments.

Assessment of Approaches for Using Process Safety Metrics at the Blue Grass and Pueblo Chemical Agent Destruction Pilot Plants   (BAST)
Released 2011-04-19

The Department of Defense, through the Assembled Chemical Weapons Alternatives program, is currently in the process of constructing two full-scale pilot plants at the Pueblo Chemical Depot in Colorado and the Blue Grass Army Depot in Kentucky to destroy the last two remaining inventories of chemical weapons in the U.S. stockpile. Unlike their predecessors, these facilities will use neutralization technologies to destroy agents contained within rockets, projectiles, and mortar rounds, requiring the use of specially designed equipment. Concern about potential problems associated with using this "first-of-a-kind" equipment, and the need to ensure that plant operations adhere to congressional mandates calling for the maximum protection of workers, the public, and the environment, led the Program Manager for Assembled Chemical Weapons Alternatives to request that the National Research Council undertake a study to guide the development and application of process safety metrics for the Pueblo and Blue Grass facilities.

Engineering Aviation Security Environments--False Alarm Reduction: Interim Report (Letter Report)   (NMMB)
Released 2011-03-29

The Future of Computing Performance: Game Over or Next Level?   (CSTB)
Released 2011-03-21

The end of dramatic exponential growth in single-processor performance marks the end of the dominance of the single microprocessor in computing. The era of sequential computing must give way to a new era in which parallelism is at the forefront. Although important scientific and engineering challenges lie ahead, this is an opportune time for innovation in programming systems and computing architectures. We have already begun to see diversity in computer designs to optimize for such considerations as power and throughput. The next generation of discoveries is likely to require advances at both the hardware and software levels of computing systems. There is no guarantee that we can make parallel computing as common and easy to use as yesterday's sequential single-processor computer systems, but unless we aggressively pursue efforts suggested by the recommendations in this book, it will be "game over" for growth in computing performance. If parallel programming and related software efforts fail to become widespread, the development of exciting new applications that drive the computer industry will stall; if such innovation stalls, many other parts of the economy will follow suit. The Future of Computing Performance describes the factors that have led to the future limitations on growth for single processors that are based on complementary metal oxide semiconductor (CMOS) technology. It explores challenges inherent in parallel computing and architecture, including ever-increasing power consumption and the escalated requirements for heat dissipation. The book delineates a research, practice, and education agenda to help overcome these challenges. The Future of Computing Performance will guide researchers, manufacturers, and information technology professionals in the right direction for sustainable growth in computer performance, so that we may all enjoy the next level of benefits to society.

Public Response to Alerts and Warnings on Mobile Devices: Summary of a Workshop on Current Knowledge and Research Gaps   (CSTB)
Released 2011-03-18

This book presents a summary of the Workshop on Public Response to Alerts and Warnings on Mobile Devices: Current Knowledge and Research Gaps, held April 13 and 14, 2010, in Washington, D.C., under the auspices of the National Research Council's Committee on Public Response to Alerts and Warnings on Mobile Devices: Current Knowledge and Research Needs. The workshop was structured to gather inputs and insights from social science researchers, technologists, emergency management professionals, and other experts knowledgeable about how the public responds to alerts and warnings, focusing specifically on how the public responds to mobile alerting.

Evaluation of U.S. Air Force Preacquisition Technology Development   (AFSB)
Released 2011-03-01

From the days of biplanes and open cockpits, the air forces of the United States have relied on the mastery of technology. From design to operation, a project can stretch to 20 years and more, with continuous increases in cost. Much of the delay and cost growth afflicting modern United States Air Force (USAF) programs is rooted in the incorporation of advanced technology into major systems acquisition. Leaders in the Air Force responsible for science and technology and acquisition are trying to determine the optimal way to utilize existing policies, processes, and resources to properly document and execute pre-program of record technology development efforts, including opportunities to facilitate the rapid acquisition of revolutionary capabilities and the more deliberate acquisition of evolutionary capabilities. Evaluation of U.S. Air Force Preacquisition Technology Development responds to this need with an examination of the current state of Air Force technology development and the environment in which technology is acquired. The book considers best practices from both government and industry to distill appropriate recommendations that can be implemented within the USAF.

Wireless Technology Prospects and Policy Options   (CSTB)
Released 2011-02-24

The use of radio-frequency communication--commonly referred to as wireless communication--is becoming more pervasive as well as more economically and socially important. Technological progress over many decades has enabled the deployment of several successive generations of cellular telephone technology, which is now used by many billions of people worldwide; the near-universal addition of wireless local area networking to personal computers; and a proliferation of actual and proposed uses of wireless communications. The flood of new technologies, applications, and markets has also opened up opportunities for examining and adjusting the policy framework that currently governs the management and use of the spectrum and the institutions involved in it, and models for allocating spectrum and charging for it have come under increasing scrutiny. Yet even as many agree that further change to the policy framework is needed, there is debate about precisely how the overall framework should be changed, what trajectory its evolution should follow, and how dramatic or rapid the change should be. Many groups have opinions, positions, demands, and desires related to these questions--reflecting multiple commercial, social, and political agendas and a mix of technical, economic, and social perspectives. The development of technologies and associated policy and regulatory regimes are often closely coupled, an interplay apparent as early as the 1910s, when spectrum policy emerged in response to the growth of radio communications. As outlined in this report, current and ongoing technological advances suggest the need for a careful reassessment of the assumptions that inform spectrum policy in the United States today. This book seeks to shine a spotlight on 21st-century technology trends and to outline the implications of emerging technologies for spectrum management in ways that the committee hopes will be useful to those setting future spectrum policy.

Research Opportunities in Corrosion Science and Engineering   (NMAB)
Released 2011-01-27

The field of corrosion science and engineering is on the threshold of important advances. Advances in lifetime prediction and technological solutions, as enabled by the convergence of experimental and computational length and timescales and powerful new modeling techniques, are allowing the development of rigorous, mechanistically based models from observations and physical laws. Despite considerable progress in the integration of materials by design into engineering development of products, corrosion considerations are typically missing from such constructs. Similarly, condition monitoring and remaining life prediction (prognosis) do not at present incorporate corrosion factors. Great opportunities exist to use the framework of these materials design and engineering tools to stimulate corrosion research and development to achieve quantitative life prediction, to incorporate state-of-the-art sensing approaches into experimentation and materials architectures, and to introduce environmental degradation factors into these capabilities. Research Opportunities in Corrosion Science and Engineering identifies grand challenges for the corrosion research community, highlights research opportunities in corrosion science and engineering, and posits a national strategy for corrosion research. It is a logical and necessary complement to the recently published book, Assessment of Corrosion Education, which emphasized that technical education must be supported by academic, industrial, and government research. Although the present report focuses on the government role, this emphasis does not diminish the role of industry or academia.

Modeling the Economics of Greenhouse Gas Mitigation: Summary of a Workshop  
Released 2011-01-24

Models are fundamental for estimating the possible costs and effectiveness of different policies for reducing greenhouse gas (GHG) emissions. There is a wide array of models to perform such analysis, differing in the level of technological detail, treatment of technological progress, spatial and sector details, and representation of the interaction of the energy sector to the overall economy and environment. These differences impact model results, including cost estimates. More fundamentally, these models differ as to how they represent fundamental processes that have a large impact on policy analysis--such as how different models represent technological learning and cost reductions that come through increasing production volumes, or how different models represent baseline conditions. Reliable estimates of the costs and potential impacts on the United States economy of various emissions reduction and other mitigation strategies are critical to the development of the federal climate change research and development portfolio. At the request of the U.S. Department of Energy (DOE), the National Academies organized a workshop, summarized in this volume, to consider some of these types of modeling issues.

New Worlds, New Horizons in Astronomy and Astrophysics   (BPA,SSB)
Released 2011-01-04

Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.