Skip to Main Content
  Contact
 
The National Academies of Sciences, Engineering and Medicine
Division on Engineering and Physical Sciences
Division on Engineering and Physical Sciences
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Units, Committees, Roundtables, Forums
- Contact DEPS Staff
- Our Mission
- DEPS FAQ
- Current Projects
Aeronautics
2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

book coverNASA Space Technology Roadmaps and Priorities Revisited   (ASEB)
Released 0000-00-00

Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA’s space technology roadmaps, which are expected to occur every 4 years.

book coverCommercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions   (ASEB)
Released 2016-08-09

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraft— single-aisle and twin-aisle aircraft that carry 100 or more passengers—because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.