Saturday, April 19, 2014
Division on Engineering and Physical Sciences The National Academies
National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Free Multimedia
- Boards and Committees
- Contact DEPS Staff
- Our Mission
- DEPS FAQ
- Current Projects
Materials
2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

book coverEngineering Aviation Security Environments--Reduction of False Alarms in Computed Tomography-Based Screening of Checked Baggage   (NMMB)
Released 2013-07-19

On November 19, 2001 the Transportation Security Administration (TSA) was created as a separate entity within the U.S. Department of Transportation through the Aviation and Transportation Security Act. The act also mandated that all checked baggage on U.S. flights be scanned by explosive detection systems (EDSs) for the presence of threats. These systems needed to be deployed quickly and universally, but could not be made available everywhere. As a result the TSA emphasized the procurement and installation of certified systems where EDSs were not yet available. Computer tomography (CT)-based systems became the certified method or place-holder for EDSs. CT systems cannot detect explosives but instead create images of potential threats that can be compared to criteria to determine if they are real threats. The TSA has placed a great emphasis on high level detections in order to slow false negatives or missed detections. As a result there is abundance in false positives or false alarms. In order to get a better handle on these false positives the National Research Council (NRC) was asked to examine the technology of current aviation-security EDSs and false positives produced by this equipment. The ad hoc committee assigned to this task examined and evaluated the cases of false positives in the EDSs, assessed the impact of false positive resolution on personnel and resource allocation, and made recommendations on investigating false positives without increase false negatives. To complete their task the committee held four meetings in which they observed security measures at the San Francisco International Airport, heard from employees of DHS and the TSA. Engineering Aviation Security Environments--Reduction of False Alarms in Computed Tomography-Based Screening of Checked Baggage is the result of the committee's investigation. The report includes key conclusions and findings, an overview of EDSs, and recommendations made by the committee.

book coverTriennial Review of the National Nanotechnology Initiative   (NMMB)
Released 2013-12-20

The National Nanotechnology Initiative (NNI) is a multiagency, multidisciplinary federal initiative comprising a collection of research programs and other activities funded by the participating agencies and linked by the vision of "a future in which the ability to understand and control matter at the nanoscale leads to a revolution in technology and industry that benefits society." As first stated in the 2004 NNI strategic plan, the participating agencies intend to make progress in realizing that vision by working toward four goals. Planning, coordination, and management of the NNI are carried out by the interagency Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the National Science and Technology Council (NSTC) Committee on Technology (CoT) with support from the National Nanotechnology Coordination Office (NNCO). Triennial Review of the National Nanotechnology Initiative is the latest National Research Council review of the NNI, an assessment called for by the 21st Century Nanotechnology Research and Development Act of 2003. The overall objective of the review is to make recommendations to the NSET Subcommittee and the NNCO that will improve the NNI's value for basic and applied research and for development of applications in nanotechnology that will provide economic, societal, and national security benefits to the United States. In its assessment, the committee found it important to understand in some detail—and to describe in its report—the NNI's structure and organization; how the NNI fits within the larger federal research enterprise, as well as how it can and should be organized for management purposes; and the initiative's various stakeholders and their roles with respect to research. Because technology transfer, one of the four NNI goals, is dependent on management and coordination, the committee chose to address the topic of technology transfer last, following its discussion of definitions of success and metrics for assessing progress toward achieving the four goals and management and coordination. Addressing its tasks in this order would, the committee hoped, better reflect the logic of its approach to review of the NNI. Triennial Review of the National Nanotechnology Initiative also provides concluding remarks in the last chapter.

book coverOptics and Photonics: Essential Technologies for Our Nation   (NMMB)
Released 2013-02-19

Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--including market trends, workforce needs, and the impact of photonics on the national economy. It identifies the technological opportunities that have arisen from recent advances in, and applications of, optical science and engineering. The report also calls for improved management of U.S. public and private research and development resources, emphasizing the need for public policy that encourages adoption of a portfolio approach to investing in the wide and diverse opportunities now available within photonics. Optics and Photonics: Essential Technologies for our Nation is a useful overview not only for policymakers, such as decision-makers at relevant Federal agencies on the current state of optics and photonics research and applications but also for individuals seeking a broad understanding of the fields of optics and photonics in many arenas.