Saturday, October 25, 2014
Division on Engineering and Physical Sciences The National Academies
National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
- Deps home
deps_leftnav_icon08 America's Energy Future
- DEPS COMMITTEE
- Reports
- DEPSNews Archives
- Boards and Committees
- Contact DEPS Staff
- Our Mission
- DEPS FAQ
- Current Projects
Mathematical Sciences and Applications
2014 2013 2012 2011 2010 2008 2007 2005 2004

book coverFrontiers in Massive Data Analysis   (BMSA)
Released 2013-09-03

Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale--terabytes and petabytes--is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge--from computer science, statistics, machine learning, and application disciplines--that must be brought to bear to make useful inferences from massive data.

book coverThe Mathematical Sciences in 2025   (BMSA)
Released 2013-05-13

The mathematical sciences are part of nearly all aspects of everyday life--the discipline has underpinned such beneficial modern capabilities as Internet search, medical imaging, computer animation, numerical weather predictions, and all types of digital communications. The Mathematical Sciences in 2025 examines the current state of the mathematical sciences and explores the changes needed for the discipline to be in a strong position and able to maximize its contribution to the nation in 2025. It finds the vitality of the discipline excellent and that it contributes in expanding ways to most areas of science and engineering, as well as to the nation as a whole, and recommends that training for future generations of mathematical scientists should be re-assessed in light of the increasingly cross-disciplinary nature of the mathematical sciences. In addition, because of the valuable interplay between ideas and people from all parts of the mathematical sciences, the report emphasizes that universities and the government need to continue to invest in the full spectrum of the mathematical sciences in order for the whole enterprise to continue to flourish long-term.

Report in Brief