Tuesday, September 16, 2014  Current Operating Status
 

Publications

 

2012

 

In addition to the NRC studies listed the Transportation Research Board also publishes a number of technical reports and papers through its various Programs and Journals. You can access those reports and papers about energy at the following site: http://www.trb.org/Energy/TRBPublications.aspx.

 

2012-terrorism-power-grid

Terrorism and the Electric Power Delivery System (BEES)

 

The U.S. power delivery system is remarkably complex. Its network of substations, transmission lines, and distribution lines are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. In addition, investment to strengthen and upgrade the grid has lagged, resulting in a high-voltage system with many heavily stressed parts. Overall, the nation’s power grid is in need of expansion and upgrading. Since all parts of the economy—as well as human health and welfare—depend on electricity, the results of a well-planned and coordinated attack on the power delivery system could be particularly devastating. This report1 examines technologies and strategies that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the power is out. The approaches explored in the report can greatly reduce the grid’s vulnerability to cascading failures, whether initiated by terrorists, nature, or malfunctions.

 

Report in Brief (PDF) 

 

2013-algal-biofuels

Sustainable Development of Algal Biofuels (BEES)

 

Biofuels made from algae are gaining attention as a domestic source of renewable fuel. However, with current technologies, scaling up production of algal biofuels to meet even 5 percent of U.S. transportation fuel needs could create unsustainable demands for energy, water, and nutrient resources. Continued research and development could yield innovations to address these challenges, but determining if algal biofuel is a viable fuel alternative will involve comparing the environmental, economic and social impacts of algal biofuel production and use to those associated with petroleum-based fuels and other fuel sources. Sustainable Development of Algal Biofuels was produced at the request of the U.S. Department of Energy.
 

2013-optics-and-photonics

Optics and Photonics: Essential Technologies for Our Nation (NMMB)

 

Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet.

 

As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--including market trends, workforce needs, and the impact of photonics on the national economy. It identifies the technological opportunities that have arisen from recent advances in, and applications of, optical science and engineering. The report also calls for improved management of U.S. public and private research and development resources, emphasizing the need for public policy that encourages adoption of a portfolio approach to investing in the wide and diverse opportunities now available within photonics.

 

Optics and Photonics: Essential Technologies for our Nation is a useful overview not only for policymakers, such as decision-makers at relevant Federal agencies on the current state of optics and photonics research and applications but also for individuals seeking a broad understanding of the fields of optics and photonics in many arenas.
 

2012-heart-of-matter

Nuclear Phyisics: Exploring the Heart of Matter (BPA)

 

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics.

The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond.  In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments.

 

Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.

Report in Brief (PDF)

 

2012-computing-research

Computing Research for Sustainability (CSTB)

 

A broad and growing literature describes the deep and multidisciplinary nature of the sustainability challenges faced by the United States and the world. Despite the profound technical challenges involved, sustainability is not, at its root, a technical problem, nor will merely technical solutions be sufficient. Instead, deep economic, political, and cultural adjustments will ultimately be required, along with a major, long-term commitment in each sphere to deploy the requisite technical solutions at scale. 

 

Nevertheless, technological advances and enablers have a clear role in supporting such change, and information technology (IT) is a natural bridge between technical and social solutions because it can offer improved communication and transparency for fostering the necessary economic, political, and cultural adjustments. Moreover, IT is at the heart of nearly every large-scale socioeconomic system-including systems for finance, manufacturing, and the generation and distribution of energy-and so sustainability-focused changes in those systems are inextricably linked with advances in IT.

 

The focus of Computing Research for Sustainability is "greening through IT," the application of computing to promote sustainability broadly. The aim of this report is twofold: to shine a spotlight on areas where IT innovation and computer science (CS) research can help, and to urge the computing research community to bring its approaches and methodologies to bear on these pressing global challenges. Computing Research for Sustainability focuses on addressing medium- and long-term challenges in a way that would have significant, measurable impact. The findings and recommended principles of the Committee on Computing Research for Environmental and Societal Sustainability concern four areas: (1) the relevance of IT and CS to sustainability; (2) the value of the CS approach to problem solving, particularly as it pertains to sustainability challenges; (3) key CS research areas; and (4) strategy and pragmatic approaches for CS research on sustainability.
 

2012-induced-seismicity

Induced Seismicity Potential in Energy Technologies (BESR)

 

In the past several years, some energy technologies that inject or extract fluid from the Earth, such as oil and gas development and geothermal energy development, have been found or suspected to cause seismic events, drawing heightened public attention.

 

Although only a very small fraction of injection and extraction activities among the hundreds of thousands of energy development sites in the United States have induced seismicity at levels noticeable to the public, understanding the potential for inducing felt seismic events and for limiting their occurrence and impacts is desirable for state and federal agencies, industry, and the public at large. To better understand, limit, and respond to induced seismic events, work is needed to build robust prediction models, to assess potential hazards, and to help relevant agencies coordinate to address them.

 

Induced Seismicity Potential in Energy Technologies identifies gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential.
 

2012-prospects-intertial-fusion

Interim Report-Status of the Study "An Assessment of the Prospects for Inertial Fusion Energy" (BPA, BEES)

 

The scientific and technological progress in inertial confinement fusion has been substantial during the past decade. However, many of the technologies needed for an integrated inertial fusion energy system are still at an early stage of technological maturity. For all approaches to inertial fusion energy there remain critical scientific and engineering challenges.

 

In this interim report of the study An Assessment of the Prospects for Inertial Fusion Energy, the Committee on the Prospects for Inertial Confinement Fusion Energy Systems outlines their preliminary conclusions and recommendations of the feasibility of inertial fusion energy. The committee also describes its anticipated next steps as it prepares its final report.

 

2012-role-of-chemical-sciences

The Role of the Chemical Sciences in Finding Alternatives to Critical Resources: A Workshop Summary (BCST)

 

The Chemical Sciences Roundtable (CSR) was established in 1997 by the National Research Council (NRC). It provides a science oriented apolitical forum for leaders in the chemical sciences to discuss chemistry-related issues affecting government, industry, and universities. Organized by the National Research Council's Board on Chemical Sciences and Technology, the CSR aims to strengthen the chemical sciences by fostering communication among the people and organizations - spanning industry, government, universities, and professional associations - involved with the chemical enterprise. One way it does this is by organizing workshops that address issues in chemical science and technology that require national attention.

 

In September 2011, the CSR organized a workshop on the topic, "The Role of Chemical Sciences in Finding Alternatives to Critical Resources." The one-and-a-half-day workshop addressed key topics, including the economic and political matrix, the history of societal responses to key mineral and material shortages, the applications for and properties of existing minerals and materials, and the chemistry of possible replacements. The workshop featured several presentations highlighting the importance of critical nonfuel mineral and material resources in history, catalysis, agriculture, and electronic, magnetic, and optical applications.

 

The Role of the Chemical Sciences in Finding Alternatives to Critical Resources: A Workshop Summary explains the presentations and discussions that took place at the workshop. In accordance with the policies of the NRC, the workshop did not attempt to establish any conclusions or recommendations about needs and future directions, focusing instead on issues identified by the speakers.
 

2012-progress-challenges

Progress, Challenges, and Opportunities for Converting U.S. and Russian Research Reactors: A Workshop (NRSB)

 

Highly enriched uranium (HEU) is used for two major civilian purposes: as fuel for research reactors and as targets for medical isotope production. This material can be dangerous in the wrong hands. Stolen or diverted HEU can be used-in conjunction with some knowledge of physics-to build nuclear explosive devices. Thus, the continued civilian use of HEU is of concern particularly because this material may not be uniformly well-protected. To address these concerns, the National Research Council (NRC) of the U.S. National Academies and the Russian Academy of Sciences (RAS) held a joint symposium on June 8-10, 2011.

 

Progress, Challenges, and Opportunities for Converting U.S. and Russian Research Reactors summarizes the proceedings of this joint symposium. This report addresses: (1) recent progress on conversion of research reactors, with a focus on U.S.- and R.F.-origin reactors; (2) lessons learned for overcoming conversion challenges, increasing the effectiveness of research reactor use, and enabling new reactor missions; (3) future research reactor conversion plans, challenges, and opportunities; and (4) actions that could be taken by U.S. and Russian organizations to promote conversion. The agenda for the symposium is provided in Appendix A, biographical sketches of the committee members are provided in Appendix B, and the report concludes with the statement of task in Appendix C.
 

2012-effective-tracking

Effective Tracking of Building Energy Use: Improving the Commercial Buildings and Residential Energy Consumption Surveys (CNSTAT, BEES)

 

The United States is responsible for nearly one-fifth of the world's energy consumption. Population growth, and the associated growth in housing, commercial floor space, transportation, goods, and services is expected to cause a 0.7 percent annual increase in energy demand for the foreseeable future. The energy used by the commercial and residential sectors represents approximately 40 percent of the nation's total energy consumption, and the share of these two sectors is expected to increase in the future.

 

The Commercial Buildings Energy Consumption Survey (CBECS) and Residential Energy Consumption Survey (RECS) are two major surveys conducted by the Energy Information Administration. The surveys are the most relevant sources of data available to researchers and policy makers on energy consumption in the commercial and residential sectors. Many of the design decisions and operational procedures for the CBECS and RECS were developed in the 1970s and 1980s, and resource limitations during much of the time since then have prevented EIA from making significant changes to the data collections. Effective Tracking of Building Energy Use makes recommendations for redesigning the surveys based on a review of evolving data user needs and an assessment of new developments in relevant survey methods.
 

2012-research-frontiers

Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop (BCST)

 

In May 2007, the National Academies Chemical Sciences Roundtable held a public workshop on the topic of Bioinspired Chemistry for Energy, where government, academic, and industry representatives discussed promising research developments in solar-generated fuels, hydrogen-processing enzymes, artificial photosynthetic systems, and biological-based fuel cells. Workshop participants identified the need for a follow-up activity that would explore bioinspired energy processes in more depth and involve a wider array of disciplines as speakers and participants. Particularly, workshop participants stressed the importance of holding a workshop that would include more researchers from the biological sciences and engineering, as well as those involved in technological advances that enable progress in understanding these systems.

 

Building upon the 2007 workshop, the National Academies Board on Chemical Sciences and Technology convened the Committee on Research Frontiers in Bioinspired Energy to organize a second workshop in 2011 which, according to the statement of task, would explore the molecular-level frontiers of energy processes in nature through an interactive, multidisciplinary, and public format. Specifically, the committee was charged to feature invited presentations and include discussion of key biological energy capture, storage, and transformation processes; gaps in knowledge and barriers to transitioning the current state of knowledge into applications; and underdeveloped research opportunities that might exist beyond disciplinary boundaries. 

 

Research Frontiers in Bioinspired Energy is an account of what occurred at the 2011 workshop, and does not attempt to present any consensus findings or recommendations of the workshop participants. It summarizes the views expressed by workshop participants, and while the committee is responsible for the overall quality and accuracy of the report as a record of what transpired at the workshop, the views contained in the report are not necessarily those of the committee.
 

2012-computing-research-sustainability

Computing Research for Sustainability (CSTB)

 

A broad and growing literature describes the deep and multidisciplinary nature of the sustainability challenges faced by the United States and the world. Despite the profound technical challenges involved, sustainability is not, at its root, a technical problem, nor will merely technical solutions be sufficient. Instead, deep economic, political, and cultural adjustments will ultimately be required, along with a major, long-term commitment in each sphere to deploy the requisite technical solutions at scale. 

 

Nevertheless, technological advances and enablers have a clear role in supporting such change, and information technology (IT) is a natural bridge between technical and social solutions because it can offer improved communication and transparency for fostering the necessary economic, political, and cultural adjustments. Moreover, IT is at the heart of nearly every large-scale socioeconomic system-including systems for finance, manufacturing, and the generation and distribution of energy-and so sustainability-focused changes in those systems are inextricably linked with advances in IT.

 

The focus of Computing Research for Sustainability is "greening through IT," the application of computing to promote sustainability broadly. The aim of this report is twofold: to shine a spotlight on areas where IT innovation and computer science (CS) research can help, and to urge the computing research community to bring its approaches and methodologies to bear on these pressing global challenges. Computing Research for Sustainability focuses on addressing medium- and long-term challenges in a way that would have significant, measurable impact. The findings and recommended principles of the Committee on Computing Research for Environmental and Societal Sustainability concern four areas: (1) the relevance of IT and CS to sustainability; (2) the value of the CS approach to problem solving, particularly as it pertains to sustainability challenges; (3) key CS research areas; and (4) strategy and pragmatic approaches for CS research on sustainability.

 

 
Skip back to Navigation