Disaster Response Robot Quince and Lessons at Fukushima-Daiichi Nuclear Power Plant Accident

Satoshi Tadokoro

International Research Institute of Disaster Science & Graduate School of Information Sciences, Tohoku University International Rescue System Institute

National Science of Academy Workshop 2011.6.12

Japan MEXT DDT Project on Rescue Robots FY2002-2006, PI: Prof. S. Tadokoro, Intl. Rescue System Inst., Budget: US\$20M

Information Integration

Protocol and Database

- Protocol standardization (MISP)
- Disaster info. database (DaRuMa)
- Network integration and operation

Overview Info. Gathering

Surveillance from Sky

- Small-size helicopter (automatic surveillance)
- InfoBalloon (monitoring from fixed points)

Distributed Sensors

Rescue Communicator (victim search sensor)

Advanced Rescue Instruments

Surveillance in Rubble Pile

Flexible Sensor Tube Multi Functiona Range Finder HI Utilizing Past Image

Surveillance in Underground

- · ActiveScope Camera
- Integrated serpentine robot
- Rescue tools (jacks, search cam, power tools, etc.)
- Wireless triage tag (for rescue logistics)
- Integrated UGV
- Connected mobile mechanism
- Jumping robot
- Human interface for teleop. (virtual bird-eye view, 3D map, standardization, etc.)
- UWB human body sensor
- Adhoc network

Verification, Training, Demonstration

- Tokyo FD training site
- Niigata Chuetsu EQ.
- JICA Intl. Rescue training
- FEMA training site
- **Collapsed House Simulation** Facility in Kobe Lab.
- Firefighters unit, IRS-U

Multi-Camera System

Confined Space Inspection

Active Scope Camera

Normal Video Scope

Stop in the middle

Active Scope Camera

Move through the whole passage $\times 3$

Active Scope Camera Deployment to Construction Accident in Jacksonville (Tadokoro, Tohoku U Murphy, USF)

- Jan. 4-5, 2008 @ Jacksonville, FL
- Gathered evidence info. 7 m deep
 - Shape & direction of RC cracks
 - Shape & cross section of flakes
 - Image of spaces inside
- Impossible by other equipment
 - size, mobility, controllability

CRASAR-IRS Deployment to Cologne Historic Archive Collapse

Cologne, Germany, March 6-8, 2009

R International Rescue System Institute

 Search for 2 victims

Standby for 3 days

Operation from rubble pile 30 m high was too risky.

Inspection of Pipe with 12 Elbows

With 12 RectangularStraight PipeElbows

Industrial application for aging facilities and infrastructure

Rinternational Rescue System Institute

International Rescue System Institute at East-Japan EQ

Date in 2011	Major Activities	Target	P in C	
3/11	US: Request to CRASAR for deployment (Invitation letter: 3/17)			ST
3/13	Sendai: ASC standby with Sendai City FD			ST
3/14	Sendai: Call for robot needs to METI Tohoku and local governments Sendai: Quince standby			ST EK, ST
3/15	Sendai: Airport investigation			ST, EK
3/17	Chiba: Quince development for Kashima Petrol Plant Chiba: Quince development for Fukushima Nuclear Plant			EK EK, ST
3/19	Hachinohe: KOHGA building inspection, Needs in ports			FM
3/28	Sendai: Quince collapsed building inspection			ST
3/31	Iwate: Call for port inspection			FM
4/2	Minami-Sanriku: Request for port inspection by mayor			TK
4/7	Miyagi: Call for port inspection	Red: Disaster Application	Port	MM
4/11	Miyagi, Iwate: Call for digital archive	Green: Preparation	Town	MM
4/12	Sendai: 3D & thermo camera for JAEA Vehicle			ST
4/18-19	Watari: Anchor Diver III port inspection			SH
4/18-19	M-Sanriku: Seamore, SARbot port inspection w CRASAR			RM, TK
4/20-22	R-Takada: Seamore, SARbot port inspection w CRASAR			RM, FM
4/29-5/1	Ohtsuchi: RTV found 2 victims in sea			TU
6/24-10/20 (6 times)	Fukushima: Quince in Fukushima-Daiichi Reactor Bldg.			EK
7/28-8/1	Sendai: Quince & Pelican collapsed building inspection			VK, ST
10/23-25	M-Sanriku: Seamore, SARbot port	inspection w CRASAR	Port	RM, FM

Unit 4 on April 7, 2012

Cask Storage on April 7, 2012

Operation Floor (5F) of Unit 4 on April 7, 2012

Needs for Robots in Fukushima Daiichi

Missions

- Stabilization of the system (Cooling and confinement)
- Decommission (Extraction of nuclear fuel)
- Minimization of radiation exposure of workers

Tasks

Debris clearing

- Surveillance and mapping outside and inside of the buildings (images, radiation, temperature, humidity, oxygen concentration, etc.)
- Instruments setup, sampling
- Shield and decontamination, etc.
- Material transportation
- Construction of pipes and equipment

R International Rescue System Institute

Mobile Robots Packbot (Remotely controlled) From Apr. 17

Entering from the doors

Near Doors

1st floor of R/B Unit 1

 1^{st} floor of R/B Unit 2

1st floor of R/B Unit 3

TEPCO

Rescue System Institute

Operation of Quince at Fukushima-Daiichi

June 26 - Oct 20

- Why Quince?
 - Higher mobility than other robots for 2nd to 5th & B1 floors
 - Visual inspection by its HD camera
 - 2D/3D map generation
- Pros and Cons

Robot	Reliability	Communication	Radiation tolerance	Mobility	Mani- pulator	Camera
Quince	Good	VDSL (twisted pair cable) wireless LAN	Good	Excellent (2-5F)	Good	HD
Packbot	Excellent	optical cable wireless	Good	Good (only 1F)	Excellent	SD
Brokk	Excellent	cable ??	Excellent	Affordable	Excellent	??

NEDO Strategic R&D PJ on Advanced Robot Components High-Speed Search Robots for Confined Space

R International Rescue System Institute

🗙 International Rescue System Institute

Kenaf showed the best mobility in the world using the NIST rescue robot evaluation field, which is proposed as international standard by ASTM.

Rescue System Institute

Experiments @ E-Defense (Oct. 27, 2009)

3 story houses collapsed

Mobility at collapsed roof

Entry into collapsed house International Rescue System Institute Mobility on beams of roof

NEDO Strategic Robot Component Tech. PJ Search Robots for Confined Space (2006-2010)

"Quince" at Disaster City (3/9/2011)

Operator Support by Semi-Autonomy

(2) Based on Measurement of Terrain Shape by Laser Range Finders

(1) By Using Touch Sensors+ Distance Sensors

3-D Mapping

3-D laser scanner for dense point could

HD Scanner Laser Trajectory

3D Shape

Tadokoro Lab. Tohoku Univercity http://www.rm.is.tohoku.ac.jp/

3D Interface @ Disaster City

3D interface + Rubble pile adaptation in pancake crush structure

(2008.11.18-20)

Classification of 3-D Point Cloud

Hybrid Adhoc Network of Wired+Wireless

- Capacity and Less Delay

 Wireless ---- Branch
 Cable ------ Backbone
- Freedom of Robot Motion
 - Robots do not need relay data from the other robots
 - Rinternational Rescue System Institute

- Higher Reliability
 - Cable:

robust against congestion

Redundancy:
 cable + wireless (backbone)
 --> robust against cut of cable

Integration of Data from Multiple Robots

Radiation Tolerance

Knowledge base

- Human workers may work up to a total dose 100 mSv/year.
- Semiconductors are damaged by low radiation.
 - Mobile Pentium III 600 MHz can survive in total dose 23-93 Gy (Sv).
- Materials are damaged by high radiation (MGy).
- Bit change seldom occurs without charged particles.
 - Gamma ray is the major radiation in nuclear plant.
 - Gamma ray does not have charged particles.
- Radiation at the entrance of RB is 10-100 mSv order.
- In gamma ray, the two units are equal: Gy = Sv.
- Question
 - Can the consumer semiconductors and sensors work?
 - ATOM, CCD, LIDAR, battery, etc. of Quince work under a few Sv/h in the nuclear reactor buildings?
 - Is heavy shielding necessary?
 - Then, robots have no mobility.

Radiation Tolerance

- Dose tolerance test at JAEA Takasaki Lab.
 - Cobalt 60 (20-40 Gy) for 5 hours
 - System functioning test by sensor test programs.
- Experimental Results: If 100mSv/h, and safety factor 0.1
 - LIDAR: 124 Gy (Sv) \rightarrow 124 hrs = 5.2 days
 - CCD Camera: 169 Gy (Sv) \rightarrow 169 hrs = 7.0 days
 - Others: over 200 Gy (Sv) \rightarrow 200 hrs = 8.3 days
- Conclusion: Quince has enough dose tolerance.

Communication

Knowledge base

- Wireless LAN (2.4 GHz) of Japanese regulation reaches only 50 m on line of sight.
- Remote control from up to 400 m in distance is required, although the size of RB is 50 x 50 m.
 - Then, high power? How much? 100W?
- Difficulty of wireless communication at narrow steps in firefighters' training towers surrounded by RC.
- RB has perfect shield to prevent radiation.
- Lower frequency can reach beyond obstacles.
 - Then, lower frequency?

Question

- Is wireless communication feasible in RB, or wired?
- Does the change of power and frequency solve the issue?

R International Rescue System Institute

Communication

- Communication test at Hamaoka Nuclear Power Plant at rest
 - RB1 & 2 have similar design as Fukushima-Daiichi.
 - Wireless LAN (2.4 GHz, 1W)
 -- higher power than the regulation (10mW/MHz)
 - Analog video tx (470 MHz, 1W)
 -- higher power
- Experimental Results
 - Wireless communication can be used only on line of sight.
 - Power and frequency did not change the results significantly.

Quince for Fukushima-Daiichi Nuclear Plant

July 27, 2011

Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station Reactor Building of Unit3

Site Investigation by Quince

3rd

Staircase from 2nd floor to 3rd floor

Grating at the valve of Core Spray System (point at ①)

floon 2nd floor Unit:mSv/h Details on staircase

Valve of Water Supplement (Point at ②)

※Image (there are no accuracy on reduction scale and layout)

Quince in RB2 on Oct. 20 (by TEPCO)

 \mathbb{X}

What Were Accepted by Users

- High performance of mobility
 ← After they experience the difference.
- HD camera
 - \leftarrow Easy to understand.
- Wired communication
 - ← They thought it stable (but easy to be cut...)
- Transparent user interface
 - \leftarrow They must avoid failure by misunderstandings.
- Training and exercise
 - ← They checked the robot capability. They knew the issues to be solved.

What Were NOT Accepted by Users

Autonomous motion

 \leftarrow The users cannot predict the robot behavior.

3D measurement

← The users think they know all the shapes (but exploded parts are...)

2 robots of wired and wireless

 \leftarrow Double operators are explosed to radiation.

Wireless communication

← Not stable.

Does this (seems to) contribute to the solution?

Does this (seems to) obstruct the mission?

TEPCO's Lessons

- What is the response robot?
 - Myth: Severe accident never happens
- Guideline of robot use
 - Adopt the best matching solutions one by one
 - Avoid possible failure and obstruction by troubles
 - Exercise and simulation at Unit 5 beforehand
- Issues of robot functions
 - Manned work vs. robot work
 - Reliability
 - Wireless vs. wired
 - Radioactive environment
 - Adaptability to wide range of tasks International Rescue System Institute

TEPCO's Lessons

Issues of robot operations

- Intuitive easy teleoperation
- Quick setup and clearance
- Logistics and light weight
- Operator environment
- Issues of robot maintenance
 - Decontamination for reducing exposure
 - Maintainability on site

Our Lessons

- User-R&D communication and user education/training under real/realistic situations are essential.
 - Users did not know what helps them. (and still may not know fully)
 - Engineers and researchers did not know what users need. (and still may not know fully)
 - Users did not know what spoils the robot capabilities, and what unables it to complete the mission.

(even though explained, before they experience)

 Users operate the robots, and the researchers can never. (misunderstandings may cause accidents)

Users In the Loop

R International Rescue System Institute

Robots as Useful Tools

- Robotic systems are becoming common useful tools in disaster response and recovery.
 - ← EJ Earthquake was the historically first case where many robots were used.
- Robotic solutions
 - Accessibility to the disaster information
 - Information gathering at inaccessible places by human
- Fundamental problems to be solved
 - Accessibility to High Places and Narrow Confined Space
 - 70%: no problem, 30%: inaccessible
 - \rightarrow Robots cannot be used in real situations
 - Why inaccessible -- insufficient fundamental research

R International Rescue System Institute

What research are needed to solve the 30%?

- Necessary advanced fundamental S&T
 - Mobility and positioning (high/narrow place, stability, ...)
 - Sensing and mapping (localization, imaging, victim recognition, inspection, robustness, big data, analysis, recognition, ...)
 - Light task execution (sampling, door opening, ...)
 - Communication (latency, capacity, relaying, ...)
 - Teleoperation/autonomy (controllability, situation awareness, automation, collaboration, reliability of tasks, ...)
 - Anti-explosion, durability, light weight, size, battery, logistics, ...

This problem is S&T for <u>Materialization of</u> <u>Synthetic Systems incl. Human under Severe Constraints</u>. This is NOT a simple problem of mobility nor combinatorial issue for applications