Remote Sensing Sea Surface Salinity
and the
Aquarius/SAC-D Mission

David M. Le Vine
Instrumentation Sciences Branch
NASA/Goddard Space Flight Center
Greenbelt, Maryland
Instrumentation Sciences Branch
Microwave Remote Sensing Research and Development

Current Research Topics

- **Land Surface Processes:**
 - Soil moisture
 - Snow coverage and water content
 - Vegetation type and biomass

- **Ocean Processes:**
 - Sea Surface Salinity
 - Sea Ice type and extent

- **Atmospheric Processes:**
 - Storm detection and monitoring
 - Precipitation
 - Temperature & Humidity profiles
 - Radiation from lightning
 - Hydrometeor profiles
 - Retrieval of falling snow over land

ESTAR L-band Radiometer
Sea Surface Salinity

• **Salinity needed to:**
 – Understand ocean circulation
 Salinity (with temperature) determine water density
 – Model heat exchange with the atmosphere
 Salinity gradients cause stratification at the surface
 – Monitor the water cycle
 Salinity is a tracer for water flux (evaporation & water input)
Sea Surface Salinity

• **Salinity is Important for Earth Science:**
 – Evolution of the global water cycle (is it changing?)
 – The coupling between ocean circulation and climate
• But, salinity is inadequately sampled
Remote Sensing of Salinity

\[T_B = e \, T \]
\[e = \text{Emissivity} \]
\[T = \text{Physical Temperature} \]
\[e = 1 - R^2 \]
\[= 1 - \left[\frac{(1-\text{ve})/(1+\text{ve})}{(1+\text{ve})} \right]^2 \]
\[\text{(normal incidence)} \]
\[e = \text{Relative Dielectric Constant} \]
\[= e_d - j \, \sigma / \varepsilon_0 \]
\[= \varepsilon(f, s, \tau) \]
Measurement of Salinity from Space

• **Sensor to Surface**
 – **Atmosphere**
 • Attenuation and emission
 • Flags (rain, RFI)
 – **Ionosphere**
 • Faraday rotation
 • Attenuation and emission
 – **Galactic Background Radiation**
 • Line emission (hydrogen)
 • Continuum emission
 • Cosmic background
 – **Sun**
 • Direct ray
 • Reflected ray

• **Surface to Salinity**
 – **Sea surface temperature (SST)**
 – **Surface roughness**
 • Scatterometer
 • Surface winds
 – **Antenna pattern correction**
 • Land/ocean mask
 • Polarization and pointing
 – **Model function**
• **Instrument**
 - L-band
 - Radiometer and Radar
 - 3 Beam Pushbroom
 - Polarimetric

• **Mission**
 - Sun-synch orbit 6 am/6pm
 - Night time look
 - 675 km Alt; 7 day revisit

• **Science**
 - Global maps of Sea Surface Salinity
 - Accuracy: 0.2 psu; 100 km; monthly
 - Seasonal and annual variations

• **Partnership**
 - NASA/CONAE
 - Argentina: Spacecraft (SAC-D)
 - NASA/GSFC: L-band radiometer
 - NASA/JPL: L-band scatterometer
Observatory Configuration

4850 mm
Aquarius Antenna Assembly
Aquarius Main Antenna Reflector

Reflector after VDA coating

Reflector: RF surface

Reflector: structure side
OMT-Feed Assembly
Mission & Partnership Overview

- SAC-D Instruments (CONAE)
- Aquarius Instrument (NASA JPL & GSFC)
- Observatory
- March 2009: Delta II (NASA)
- Salinity Maps Archive at PO.DACC (JPL)
- Aquarius Ground System
- Salinity Retrieval Algorithm (GSFC)
- Ground Station & Mission Operations Center (MOC) (CONAE)
L-Band Window for passive use only
L-band (1.413 GHz)
Bandwidth = 27 MHz

Applications for Passive Remote Sensing
Soil Moisture
Sea Surface Salinity
Vegetation Biomass

Limitation: Long wavelength means large antennas in orbit

<table>
<thead>
<tr>
<th>Application</th>
<th>Spatial Resolution</th>
<th>Radiometric Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Moisture</td>
<td>1-10 km</td>
<td>1 K</td>
</tr>
<tr>
<td>Salinity: Coastal</td>
<td>1-10 km</td>
<td>0.5 K</td>
</tr>
<tr>
<td>Salinity: Open Ocean</td>
<td>200 km</td>
<td>0.05 K</td>
</tr>
</tbody>
</table>
RFI at L-Band
Conclusion

• **L-Band is an Important Resource**
 – Important Parameters
 • Soil Moisture
 • Sea Surface Salinity
 • Vegetation Biomass
 – Only viable window in a crowded spectrum

• **Needs Protection**
 – Commercial pressure for more services
 – Science pressure for more sensitivity