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This talk represents a case where
astrophysical questions can be
answered by laboratory
experiments.
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Accretion Disks

An accretion disk consists of gas, dust and plasmas
rotating around and slowly falling onto a central
point-like object.

Many important astrophysical processes happen in
accretion disks:

— Formation of stars and planets in proto-star systems
— Mass transfer and energetic activity in binary stars

— Release of energy (as luminous as 101> of Sun) in
quasars and Active Galactic Nuclei

Ground-Ba¢ 2d Optical/Radio Image HST Image of a Gas and Dust Disk
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The Problem: why accretion is fast?

 Equivalent to the question why the angular momentum
outward transport is fast

compared to:

e The transport which can be supported by molecular
(classical) viscosity

therefore:

e Turbulence is required to generate enhanced *‘viscosity”

however: QxR %qg=1.5

e Hydrodynamically the steady state disks (Keplerian

disks) are linearly stable satisfying Rayleigh’s criterion
d(R?*Q)/dR>0
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Two Main Candidate Mechanisms to
Generate Turbulence for Fast Accretion

* Nonlinear hydrodynamic instabilities in cold disks, insufficiently
ionized for MHD effects but essentially inviscid (large Re’s)

— Zeldovich (1981)

— Richard & Zahn (1999) based on Wendt (1933) and Taylor (1936)

— Richard (2001) linear or nonlinear or

supercritical subcritical
Terrestrial flows are often a a
nonlinearly unstable at Re > 5| 0€2
102-10* despite linear stability. v, =PR|—
-Re ~Re R
Rec Rec

e Magnetorotational Instability (MRI) in hot disks, which are
highly electrically conducting

— Velikhov (1959) and Chandrasekhar (1960)
— Shakura & Sunyaev (1973)
— Balbus & Hawley (1991) Virb = OCCSH



Physical Picture of MRI




Understanding Turbulent Transport

Mechanism MRI Nonlinear Hydro
(parameter) (o) (P)

Observations e.g. e.g.

Hueso & Guillot (2005) 10-3-10-1 2x107-4x104

Theoretical No predictions? Inward transport if any (f<0)
arguments Balbus & Hawley (1998)
Numerical 10-3-10"! None-existing for Keplerian
simulations flows

Previous lab Controversial P=(1-2)x10->based on

experiments

Sisan et al. (2004)
Stefani et al. (2006)

Wendt(‘33), Taylor (‘36);
Richard (‘0O1), Beckley (‘02)




The Basic Idea



Magnetized Taylor-Couette Flow of
Liquid Gallium

e MRI destabilized with
appropriate ;, (% and Bz

in a table-top size.

e Identical dispersion relation
as in accretion disks in
incompressible limit

e Centrifugal force balanced
by pressure force from the
outer wall

Not to simulate accretion disks, but to study basic physics



Taylor-Couette Flows

e Maurice Couette
conceived first device to
measure water viscosity

(1890)

e Lord Rayleigh’s
criterion (1916): stable if
angular momentum

bduction réservée

increases with radius x
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Taylor-Couette Flows (Cont’d)

e Most modern work focused on nonlinear dynamics: bifurcations
and transition to turbulence
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12



Stability Diagram of Magnetized
Taylor-Couette Flow

Q,/(2m) (rpm)
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Ji, Goodman, and Kageyama, MNRAS (2001)

Unstable but can
. be stabilized by B

z

Always stable

0,/ (2m) (rpm)

600 /00

Stable but can be
% destabilized by B: MRI

Past experiments focused on
stabilization by magnetic
field
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Experimental Adventure



A Prototype Experiment

e Seed particles to monitor stability and to measure flow

Potter’s wheel 15



Prototype Experiments: Ekman Effects
due to Axial Boundaries are Important

W¢ (m/s)
o = 3 I N . * L = ) W B o o]

Kageyama et al. (2004)

[ Re=3200 - |
- Experiment

N Circular Couette
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Hydrodynamic Stability
At Large Reynolds Numbers



Fine Profile Controls by Rings

Burin et al. (2006)
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Various Types of Flows Explored at
Much Larger Reynolds Numbers (> 10/6)

most Taylor-

Couette exp’s ﬁ - quasi-Keplerian
explore along -~ flows: as quiet as
this line s solid-body flows
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Flow Becomes as Quiet as Solid-body When Entering
Linearly Stable Regime Even at Re > 1076

0.12

= 50 rpm solid body
[200,91,33,26]
[300,91,33,26]
[400,91,33,26]
[600,91,33,26]
[200,91,33,26]
turbulence
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Direct Measurement of Reynolds Stress

e Quantifying transport:

Pe
Vurh = PR R

Proposed value: g=(1-2)x107

* Simultaneous measurement of V.
and V, by a dual synchronized
Laser Doppler Velocimetry

— Random errors are reduced by large
number statistics

— Systematic errors are removed by
comparing with solid-body flows

 Benchmarked in hydrodynamically
unstable cases

V_measured by a pair of lasers



Negligible Reynolds Stress in Quasi-Keplerian Flows
-- with Optimal Boundary Conditions

<— proposed value



No Signs of Turbulence up to Re=2x10/6

100

e Remarkable from ~Non-optimal b.c. ]

experience on J )
80t .
terrestrial flows classical < >
transport Y
e Large Reynolds 60} -

stress when

Beta (10-6)

EAN
o
T

— Boundary conditions
not optimum, or

— At smaller Re’s

o $<3.4x10°6 with 98%

confidence ' Bulk Re (105)

H. Jietal., Nature (2006)
E. Schartman et al., to be submitted to A&A (2008)

Richardland Zahn
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Nonlinear Instabilities Very Unlikely Important
in Accretion Disks where Re=1012

Transition has happened at Re < 2x1076, but turbulence was undetectable

— Turbulence unlikely important at larger Re’s

Turbulent transitions in pipe flows at different wall roughness: “Moody Diagram”
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— Turbulence unlikely important, since larger Re_crit =>weaker turbulence above transition



Initial Liquid Gallium
Experiments



Predictions by 2D Simulation
with Realistic Boundaries

Liu (2008)
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30% in liquid metal



Liquid Metal Exp’ts
Have Begun

e Transition to liquid

metal experiment N
— Prevention of slow | { A ( T

oxidization R R
— Upgrade of motor

powers

e Axial field up to 5
kG

e Initial Diagnostics

— 4x9 array of pickup
coils on surface

— Radial flux loops




Non-axisymmetric Modes Appear When
Imposing Bz on Hydro-unstable Flows
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Magneto-coriolis waves?



Non-axisymmetric Modes Also Appear When
Imposing Bz on Hydro-stable Flows

Hydrodynamically
/", Stable, MHD unstable
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Summary

Mechanism MRI Nonlinear Hydro
(parameter) (o) (P)

Observations e.g. e.g.

Hueso & Guillot (2005) 10-3-10-1 2x107-4x104

Theoretical No predictions? Inward transport if any (f<0)
arguments Balbus & Hawley (1998)
Numerical 10-3-10"! None-existing for Keplerian
simulations flows

Previous lab Controversial P=(1-2)x10->based on

experiments Sisan et al. (2004) Wendt(°33), Taylor (°36);
Stefani et al. (2006) Richard (‘0O1), Beckley (‘02)
Princeton MRI Liquid Ga exp underway; $<3.4x10°(98% conf.)
eXperimentS A plasma MRI prototype exp Jl et al. (2006)

to study non-MHD effects

Schartman et al. (2008)




Astrophysical Questions
Addressed in Laboratory

Nonlinear hydrodynamic turbulence for fast accretion? Effectively
ruled out

Why quasi-Keplerian flows are so robustly stable at large Re’s?
— Resembles stability of Hurricanes/Typhoons?

— Interactions between turbulence and large-scale shear, resembling multi-scale dynamics
in plasma turbulence?

Does MRI exist in pure MHD form transporting angular momentum?
— Importance of boundary conditions

How does physics beyond dissipative MHD affect MRI and angular
momentum transport?
— Two-fluid effects, ambipolar diffusion (three-fluid effects), kinetic effects

— An Exciting Time for Laboratory Astrophysz%cs



