
Advanced Computation  for Complex Materials

• Computational Progress is brainpower limited, not 
machine limited
– Algorithms
– Physics

• Major progress in algorithms
– Quantum Monte Carlo
– Density Matrix Renormalization Group

• Building the right Hamiltonians
• Solving the dimensionality/sign problem



Getting started: density functional theory

• “DFT is exact” is a silly statement.

• LDA and LDA++ are clever, useful calculation schemes
– Always useful for getting started with a new material
– Maybe all that’s needed for weakly correlated systems

– Maybe all you can do for complex structures
– The Wrong Framework  for strongly correlated systems

• Strong interatomic correlations not treated

• Hybrids (LDA+DMFT) useful in some cases

• Many systems require reduction to a model:  the 
correlations are too complicated.

• Getting the model:
– The past: educated, insightful guesswork...

– The future: systematic reduction from band structure?



Solving lattice models
• Direct attack (exact diagonalization): Exponential growth of 

effort with system size
– Going from workstation to supercomputer only buys you a few more 

sites

• Clever algorithms: beating the exponential
– Quantum Monte Carlo

• Determinantal

• World line, stochastic series expansions:  loop algorithms!

– Density matrix renormalization group

• History of previous advances:
– An improved algorithm allows a new class of problems or new regime 

to be solved
– Trying to go beyond the regime runs into exponential problems.



Example:  QMC for the Hubbard Model

• First step: Blancenbecler, Sugar, Scalapino used the Trotter 
decomposition

• to turn the quantum problem into a Ising-like noninteracting 
Monte Carlo calculation

• This was applied to get some of the first nonperturbative 
results for the Hubbard model in 1D and 2D

e−βH ≈ e−τH . . . e−τH

• and the Hubbard Stratonovich decomposition

e−τUni↑ni↓ ∼
∑

si

e−γsi(ni↑−ni↓)



Example:  QMC for the Hubbard Model (cont)
• First problem:  for β >~ 4, a numerical instability ruined the 

simulation, requiring quadruple precision
• Solution: we found a matrix factorization procedure that cured 

the instability at all β
• Second problem:  once we could go to lower temperatures, we 

encountered the fermion sign problem ( β ~ 6) away from half 
filling.
– Universal problem related to Fermi statistics
– Problem is in treating a nonpositive quantity as a probability
– Simulations still possible (use |P|) but get exponentially hard 

as <sign(P)> vanishes
• All QMC methods still suffer the sign problem, but some 

approximate treatments have emerged  (constrain sign with 
approximate wavefunction).



Example:  Numerical RGs
• The Kondo impurity problem was one of the big unsolved 

problems of the 60’s and early 70’s
• Wilson (1975) showed how to map it onto a special 1D half-

chain and how to diagonalize the system one step at a time, 
adding sites:

H

H

L

L+1

• This showed how to solve a wide variety of impurity 
problems. For ordinary 1D lattice systems, the method failed.



Density Matrix Methods
• RG: throw away unimportant states, effective H in 

truncated basis
• Statistical Mechanics Viewpoint (Feynman SM lectures)

• Quantum Information viewpoint

– The entanglement between two systems is determined by its 
Schmidt decomposition.

– The Schmidt decomposition is equivalent to changing basis to the 
density matrix eigenvectors!

Rest of the  
Universe: |j> System |i>

Density Matrices—Review

Reference: R.P. Feynman, Statistical Mechanics: A Set of
Lectures

Let |i〉 be the states of the block (the system), and |j〉 be
the states of the rest of the lattice (the rest of the universe).
If ψ is a state of the entire lattice,

|ψ〉 =
∑

ij

ψij |i〉|j〉

The density matrix is

ρii′ =
∑

j

ψ∗

ijψi′j

If operator A acts only on the system,

〈A〉 =
∑

ii′

Aii′ρi′i = TrρA

Let ρ have eigenstates |vα〉 and eigenvalues wα ≥ 0
(
∑

α wα = 1). Then

〈A〉 =
∑

α

wα〈vα|A|vα〉

If for a particular α, wα ≈ 0, we make no error in 〈A〉 if we
discard |vα〉. One can also show we make no error in ψ.

If the rest of the universe is regarded as a “heat bath” at
inverse temperature β to which the system is weakly cou-
pled,

ρ =
1

Z
exp(−βH).

In this case the eigenstates of ρ are the eigenstates of H.
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DMRG Algorithm
• Finite system method:

• Wavefunction = matrix product state(Ostlund & Rommer,1995)

• 2D:   map onto chain
– Accuracy falls of exp’ly in width

ψ(s1, s2, . . .) = Tr{As1
1 As2

2 . . .}

Extensions – 2D and Fermion Systems

(Noack, White, Scalapino, 1994)

system block environment block

• 1D algorithm “folded” into 2D
• finite system algorithm necessary

• convergence depends strongly on width of system
⇒ exponential in width for spinless fermions (Liang & Pang 1994)



DMRG Convergence in 1D
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DMRG--doped “2D” systems
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Triangular Lattice

• Only one sublattice pinned, other two rotate in a cone
• Other two have z component -M/2
• Here only have L  = 3, 6, 9, ...
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DMRG, QMC: Status as of ~2000
• 2D Unfrustrated spin systems:

– QMC improvements (loop algorithm!) enable huge systems, 
high accuracy

• 2D Fermions:
– DMRG: very accurate on ladders, accuracy falls of exp’ly 

with width, still useful up to ~16x8 t-J clusters
– QMC:  Improvements in methods and variational 

wavefunctions give excellent results
– But: still disagreements on pairing versus stripe/CDWs in 

key models:  materials chaos!

• Dynamics:  very limited!



DMRG: New developments
• Quantum Information:  Major new ideas for DMRG!

– Key people: Vidal,  Verstraete, Cirac
– Time evolution, even far from equilibrium
– Finite temperature, disorder, periodic boundaries
– New 2D “PEPS” method: linear scaling in width, all 

exponential scaling gone!
• Unfortunately, on current computers, still more efficient to use 

older mapping to 1D DMRG.

• Why has QI been so successful?
– They think about evolution of quantum states.
– They introduce auxiliary systems to manage entanglement.
– Many clever mathematical tricks.



Example of QI applied to DMRG



J1 − J2 Model(1D)



Example: dynamics from DMRG



Example: dynamics for 1D systems
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PEPS--True 2D DMRG?
s2s1 s3 sN

|ψ>=

ψ(s1, . . . sN ) = As1 . . . AsN

DMRG

Projected Entangle Pair 
State:  wavefunction = 
contraction of tensor 
network

General variational state (MPS)



PEPS:  prospects
• Currently, PEPS is less efficient than old-style DMRG 

for accessible sizes (e.g. 8x8)
• But: calculation time is not exponential (m10)
• In the last few months, there have been three papers 

combining PEPS with Monte Carlo  (m5)



Conclusions

• Algorithmic development has been the key driving 
force in computation for solid state physics (and other 
fields!)

• Quantum Information has a lot to teach us about 
simulations!

• Issues/Discussion:
– Why are there so few DMRG/QMC/etc people in the US?
– Software

• Languages:  fast production versus efficiency; freedom from bugs; 
large codes versus small codes; time to learn the language 

•  Software libraries so you don’t have to reinvent the wheel. 


