Advanced Computation for Complex Materials

* Computational Progress is brainpower limited, not
machine limited

— Algorithms
— Physics
* Major progress in algorithms
— Quantum Monte Carlo
— Density Matrix Renormalization Group

* Building the right Hamiltonians
* Solving the dimensionality/sign problem
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Getting started: density functional theory

* “DFT is exact” is a silly statement.

e DA and LDA++ are clever, useful calculation schemes
— Always useful for getting started with a new material
— Maybe all that’s needed for weakly correlated systems
— Maybe all you can do for complex structures
— The Wrong Framework for strongly correlated systems

 Strong interatomic correlations not treated

* Hybrids (LDA+DMFT) useful in some cases

* Many systems require reduction to a model: the
correlations are too complicated.

* Getting the model:
— The past: educated, insightful guesswork...

— The future: systematic reduction from band structure!?



Solving lattice models

* Direct attack (exact diagonalization): Exponential growth of
effort with system size

— Going from workstation to supercomputer only buys you a few more
sites
* Clever algorithms: beating the exponential

— Quantum Monte Carlo
e Determinantal

* World line, stochastic series expansions: |loop algorithms!

— Density matrix renormalization group

* History of previous advances:

— An improved algorithm allows a new class of problems or new regime
to be solved

— Trying to go beyond the regime runs into exponential problems.
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Example: QMC for the Hubbard Model

=

* First step: Blancenbecler, Sugar, Scalapino used the Trotter
decomposition

—BH TH —TH

e ~ e ... €

* and the Hubbard Stratonovich decomposition
e~ TUnitniy Z e~ v5i(nir—niy)
S4

* to turn the quantum problem into a Ising-like noninteracting
Monte Carlo calculation

* This was applied to get some of the first nonperturbative
results for the Hubbard model in ID and 2D
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Example: QMC for the Hubbard Model (cont)

* First problem: for f >~ 4, a numerical instability ruined the
simulation, requiring quadruple precision

* Solution: we found a matrix factorization procedure that cured
the instability at all 8

* Second problem: once we could go to lower temperatures, we
encountered the fermion sign problem ( B ~ 6) away from half
filling.
— Universal problem related to Fermi statistics
— Problem is in treating a nonpositive quantity as a probability
— Simulations still possible (use |P|) but get exponentially hard

as <sign(P)> vanishes

o All QMC methods still suffer the sign problem, but some
approximate treatments have emerged (constrain sign with
approximate wavefunction).




Example: Numerical RGs

* The Kondo impurity problem was one of the big unsolved
problems of the 60’s and early 70’s

* Wilson (1975) showed how to map it onto a special |D half-
chain and how to diagonalize the system one step at a time,
adding sites: ----
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* This showed how to solve a wide variety of impurity
problems. For ordinary ID lattice systems, the method failed.



Density Matrix Methods

* RG: throw away unimportant states, effective H in
truncated basis

* Statistical Mechanics Viewpoint (Feynman SM lectures)
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* Quantum Information viewpoint

— The entanglement between two systems is determined by its
Schmidt decomposition.

— The Schmidt decomposition is equivalent to changing basis to the
density matrix eigenvectors!
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DMRG Algorithm

* Finite system method:

O O O O |, e |0 O O

* Wavefunction = matrix product state(Ostlund & Rommer,1995)
P(s1,82,...) = Tr{AJ* A% ...}
* 2D: map onto chain
— Accuracy falls of exp’ly in width

0 0 0 O
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DMRG--doped “2D” systems
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DMRG, QMC: Status as of ~2000

e 2D Unfrustrated spin systems:

— QMC improvements (loop algorithm!) enable huge systems,
high accuracy

e 2D Fermions:

— DMRG: very accurate on ladders, accuracy falls of exp’ly
with width, still useful up to ~16x8 t-] clusters

— QMC: Improvements in methods and variational
wavefunctions give excellent results

— But: still disagreements on pairing versus stripe/CDWVs in
key models: materials chaos!

* Dynamics: very limited!
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DMRG: New developments

* Quantum Information: Major new ideas for DMRG!
— Key people:Vidal, Verstraete, Cirac
— Time evolution, even far from equilibrium
— Finite temperature, disorder, periodic boundaries

— New 2D “PEPS” method: linear scaling in width, all
exponential scaling gone!

* Unfortunately, on current computers, still more efficient to use
older mapping to ID DMRG.

* Why has QI been so successful?

— They think about evolution of quantum states.
— They introduce auxiliary systems to manage entanglement.
— Many clever mathematical tricks.
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Example of QI applied to DMRG

Ancilla and finite temperature

DMRG gets its efficiency because the basis is specialized for the state. Infinite
temperature seems infinitely hard from this point of view.

Ancilla are artificial auxilliary sites paired with the real sites.
0 g g 3 g gagag
O -0 OO0 O - D= O

They can make a perfect heat bath (Suzuki, ..., Verstraete and Cirac). Let the state
of each site-ancilla pair be a perfectly entangled state

E) =Y Is)ls)a

Then

[y =] 1E
is a perfect representation of the 1" = oc ensemble, but requires a local DMRG basis
of size m = 1!

Evolve in imaginary time to get |¢/(t)} = exp(—3H/2)|¢"), then any finite temperature



(3 observable can be obtained:

)] AR)
<A >= O

The partition function, free energy, C',, etc, as well as real-time finite temperature
dynamics are easily obtained.

J1 — Jo Model(1D)
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Example: dynamics from DMRG

Example system: 1-d t-J model

1D t-J system, spectral weight function for adding one hole to the half-filled (undoped)
system. .JJ = 0.4. Left hand panel shows results of Brunner, Assaad, and Muramatsu,
L = 64, using a special quantum Monte Carlo good for one hole and maximum
entropy. Right panel is RK method, L = 200, m = 300, total time 1" = 20.
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Example: dynamics for ID systems

S=1/2 Chain, XXZ model
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PEPS--True 2D DMRG?
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PEPS: prospects

* Currently, PEPS is less efficient than old-style DMRG
for accessible sizes (e.g. 8x8)

* But: calculation time is not exponential (m!'?)

* In the last few months, there have been three papers
combining PEPS with Monte Carlo (m>)



Conclusions

* Algorithmic development has been the key driving

force in computation for solid state physics (and other
fields!)

e Quantum Information has a lot to teach us about
simulations!

e |ssues/Discussion:

— Why are there so few DMRG/QMC/etc people in the US?
— Software
* Languages: fast production versus efficiency; freedom from bugs;
large codes versus small codes; time to learn the language

* Software libraries so you don’t have to reinvent the wheel.
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