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AFOSR is USAF  
Basic Research Manager

• Identify Breakthrough Research Opportunities – Here & Abroad
– Regular interactions with leading scientists and engineers
– Liaison offices in Europe and Asia, soon in Latin America
– 238 short-term foreign visitors; 28 personnel exchanges
– 95 summer faculty; 30 postdocs/senior scientists at AFRL

• Foster Revolutionary Basic Research for Air Force Needs
– 1181 extramural research grants at 227 universities in FY07
– 239 intramural research projects at AFRL, USAFA, AFIT
– 150 STTR small business - university contracts
– 533 fellowships; 1390 grad students, 570 post-docs on grants

• Transition Technologies to DOD and Industry
– 100 workshops held & 144 conferences co-sponsored in FY07
– 665 funded transitions (~55% response rate)



AFOSR Basic Research Areas



AFOSR/NE FY07 Budget

CORE = $53 M

NE Total Budget = $140 M
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FY07 Solid State Related Research ~ $52M
(FY08 ~$50-60 depending on final DoD awards) 



6.1 Solid State Research Areas 

∗ Negative index materials
∗ High-temperature superconductivity
∗ Adaptive multimodal sensing matl’s/devices
∗ Novel semiconductor & electromagnetic matl’s
∗ Nanoelectronics & nanostructures
∗ Nanophotonics & integrated photonics
∗ Optical data processing & storage concepts
∗ THz radiation sources and detectors
∗ Computational materials physics
∗ Quantum simulation of condensed matter 



Example High Priority Areas  

an example for each area will follow…
(out of ~245 grants/awards in solid state)

∗ Quantum computing
∗ Negative index materials
∗ Integrated nanophotonics
∗ Nanoelectronics/nanostructures
∗ High-temperature superconductivity



Quantum Engineering with Single Spins in 
Diamond: D. Awschalom, UCSB

Objectives and Approach

AFOSR Relevance

• Optical read-out & gigahertz manipulation of single 
electron spins in semiconductors

• Atomic channels to exchange information between 
spins for ultradense information processing

• Image individual nitrogen-vacancy (N-V) defects in 
synthetic diamond through spin-dependent emission
• Coherent electronic control for room temperature

spin-based quantum optoelectronics

• Rapid advances in growth of synthetic 
diamond offer new opportunities: high 
speed low power dense nanoelectronics

• Optoelectronic capabilities for   
quantum information processing

• Extremely efficient heat sink for Silicon 
electronics to extend Moore’s law

• Integration of logic and (secure) high 
bandwidth communication
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Anti-bunching indicates single spins

Engineering Single Spin Systems in Diamond
ion-implantation of N-15 and subsequent annealing: designer spins

(LBNL)
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THz Generation from Nonlinear Negative 
Index Materials (NIMs): Chowdhury, Lucent

Theoretically discovered that terahertz waves can be generated from
optical pulses using a nonlinear NIM via long-wave / short-wave
resonance → the first report indicating NIMs could generate THz
THz radiation has many app’s: security, imaging, sensing & spectroscopy
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• Resonance occurs when the ‘group 
velocity’ of short wave (e.g. optical) 
matches the phase velocity of long 
wave (e.g. terahertz) 

• For a medium possessing second-
order nonlinearity, the coupling of
the frequencies of the long & short
waves is enhanced



Fabrication
Developing the proper 
recipe for high-quality 
fabrication (small feature 
size, low roughness)

Characterization
Developing the optical 
characterization set-up 

and the appropriate 
measurement technique

ChipChip--Scale WDM Devices Using Photonic Scale WDM Devices Using Photonic 
Crystals (PCs): Crystals (PCs): A. A. AdibiAdibi, Georgia Tech, Georgia Tech

Goal: To develop a dense integrated platform for on-chip optical processing functionalities

Air Force Payoff: Demonstration of practical building blocks that are   
essential for efficient integrated chip-scale photonic crystal platforms 
for WDM, communications, signal processing, and sensing.
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Device idea
Combining superprism 
effect with negative 
diffraction (diffraction 
compensation) and 
negative refraction for 
compact and efficient 
demultiplexing
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Achievements
1. Design of the most compact PC demultiplexer with two orders of magnitude

smaller size and world-record of wavelength resolution.
2. Design of biperiodic waveguides with lowest loss and largest bandwidth for 

single-mode guiding reported to date.
3. Demonstration of several complex functional devices for chip-scale photonics.
4. Novel theoretical, fabrication, and characterization techniques.
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Novel Devices for Plasmonic and Nanophotonic 
Networks: H. Atwater; Caltech
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Near-Field Plates: λ/20 Focusing at 1 GHz
FY06 MURI: Grbic, Jiang & Merlin, U. Michigan

• an entirely new perspective in electromagnetic field manipulation and control
• sub-wavelength focusing by radiationless interference



Varying Density of BaSnO3 Nanorods:
P. Barnes, AFRL/RZ

Higher amounts of BSO 
greatly increases Jc in 
high fields, although Jc 
decreases in low field 

operating magnetic field
is what really matters
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Cross-sectional TEM YBCO + 2% BSO, YBCO + 20% 
BSO, # of Nanorods increased as BSO % increased

Plan View TEM of YBCO + 2% BSO, YBCO + 20% BSO
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TEM by H. Wang, TAMU (YIP, PECASE)



Discover novel means of physically representing, processing, storing, & 
transporting information at Tbps speeds via new materials, processes, 
device structures, state-variables, architectures, & computational models.

Tbps/THz-Speed Electronics Vision

For e.g., III-V CMOS is becoming a
reality - could potentially breach Tbps!

Performance beyond end-of Moore’s Law (Si) projections



2008 “Beyond Moore’s Law” Winter School

Goals:
Bring together world-class researchers and 
leaders in alternative materials & technologies 
that are potentially enabling for addressing key 
challenges facing continued increased density 
and faster logic and memory architectures. 

Organizers/Sponsors: US Air Force
Office of Scientific Research, Taiwan
National Nanoscience Program, Korean
Nano-Technology Research Society

Moore’s Law:  “The number of 
transistors on a chip will 
double every 18 months.”

January 7-11, 2008, Kenting, Taiwan

Participants: 11 world-class research lecturers; over 75 international  
senior scientists, and more than 125 graduate/undergraduate students

Main organizer was Dr. Harold Weinstock



2008 “Beyond Moore’s Law” Winter School

… world-class research-instructors

… lectures are available on disc per Harold Weinstock
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Critical Issues Facing ‘End-of-Moore’s Law’
and Beyond Deeply-Scaled Digital Electronics

• The issue is more changes in IC technology and materials in past
five years than previous forty years  → driven my Moore’s Law
→ SiGe, SOI, strained Si, alternative dielectrics, new metal systems  

• And reliability has/is being traded for performance!! 
• Future space and defense systems will require greater under-

standing of reliability & radiation effects in advanced technologies

Performance is great (speed, flops, etc), but at what
cost to reduced reliability for DoD applications??  

2 AFOSR MURIs:
‘Radiation Effects on
Emerging Electronics’
& ‘21st Century Approach
for Electronics Reliability’



Compact Space Power via Nanoelectronics
Objective: Increase specific power for solar 
arrays, fuel cells and power storage systems 
for high power space platforms. 
Approach:
• Quantum Dots to enhance IR absorption
• Multicharges/photon QDs in Organic Cells
• Thermoelectrics Using Si Nanowires
• III-Nitrides for Hydrogen Fuel Cell
• Hierarchical Junction Hybrid Solar cells
• Carbon Nanotube Based Supercapacitors
• Organic Photovoltaic Cells w/ Aligned CNT

Payoff:
• Provide Power Source for High Power

Space Assets such as Space Based Radar  
and Space Based Laser

• Low cost power for Launch on Demand assets
• Reduce overall satellite weight and 

decrease cost of satellite launch
• Enable smaller and more compact satellites 
• Increase satellite lifetime, reliability and 

capabilities

Accomplishments
• Total 12 projects ($1.6M in FY07) funded, 
including 1 lab task (ML)
• Radiation hardness of Organic cells 
demonstrated (AFRL/VS and UCLA)
• 4x increase in energy density of supercapacitors
(Georgia Tech)
• Demonstrated solar cell with branched crystals 
(UC Berkeley)
• Enhanced QD response in the IR active regions 
(U of New Mexico)
• Completed the construction of a new cell and 
experimental setup for water splitting efficiency 
measurement (Kent State U)
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