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\ AFOSR is USAF

Basic Research Manager

Identify Breakthrough Research Opportunities — Here & Abroad
— Regular interactions with leading scientists and engineers

— Liaison offices in Europe and Asia, soon in Latin America

— 238 short-term foreign visitors; 28 personnel exchanges

— 95 summer faculty; 30 postdocs/senior scientists at AFRL

Foster Revolutionary Basic Research for Air Force Needs

— 1181 extramural research grants at 227 universities in FY07
— 239 intramural research projects at AFRL, USAFA, AFIT

— 150 STTR small business - university contracts

— 533 fellowships; 1390 grad students, 570 post-docs on grants

Transition Technologies to DOD and Industry

— 100 workshops held & 144 conferences co-sponsored in FYQ7
— 665 funded transitions (~55% response rate)
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%¢  AFOSRINE FY07 Budget

MFEL Others

CORE =$53 M
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Physics
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NE Total Budget = $140 M

FYO7 Solid State Related Research ~ $52M
(FY08 ~$50-60 depending on final DoD awards)
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6.1 Solid State Research Areas

Negative index materials

High-temperature superconductivity

Adaptive multimodal sensing matl’s/devices
Novel semiconductor & electromagnetic matl’s
Nanoelectronics & nanostructures
Nanophotonics & integrated photonics

Optical data processing & storage concepts
THz radiation sources and detectors
Computational materials physics

Quantum simulation of condensed matter
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%  Example High Priority Areas

* Quantum computing

* Negative index materials

* Integrated nanophotonics

* Nanoelectronics/nanostructures

* High-temperature superconductivity

an example for each area will follow...
(out of ~245 grants/awards in solid state)



g\&z‘ Quantum Engineering with Single Spins in
< Diamond: D. Awschalom, UCSB

Scientific American (2001,5" Objectives and Approach

 Optical read-out & gigahertz manipulation of single
electron spins in semiconductors

» Atomic channels to exchange information between
spins for ultradense information processing

 Image individual nitrogen-vacancy (N-V) defects in
synthetic diamond through spin-dependent emission

» Coherent electronic control for room temperature
spin-based quantum optoelectronics

AFOSR Relevance o W

» Rapid advances in growth of synthetic i ’
diamond offer new opportunities: high
speed low power dense nanoelectronics

» Optoelectronic capabilities for B
guantum information processing

» Extremely efficient heat sink for Silicon
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*\J Engineering Single Spin Systems in Diamond

— jon-implantation of N-15 and subsequent annealing: designer spins




*\j THz Generation from Nonlinear Negative

< Index Materials (NIMs): Chowdhury, Lucent

» Theoretically discovered that terahertz waves can be generated from
optical pulses using a nonlinear NIM via long-wave / short-wave
resonance — the first report indicating NIMs could generate THz

» THz radiation has many app’s: security, imaging, sensing & spectroscopy
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‘* "‘ Chip-Scale WDM Devices Using Photonic

*@% Crystals (PCs): A. Adibi, Georgia Tech

Achievements
1. Design of the most compact PC demultiplexer with two orders of magnitude
smaller size and world-record of wavelength resolution.
2. Design of biperiodic waveguides with lowest loss and largest bandwidth for
single-mode guiding reported to date.
3. Demonstration of several complex functional devices for chip-scale photonics.
4. Novel theoretical, fabrication, and characterization techniques.
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Combining superprism recipe for high-quality 1591 nm

Demultiplexers

effect with negative fabrication (small feature
diffraction  (diffraction size, low roughness) 1580 nm
compensation) and —— _ 1568 nm

negative refraction for
compact and efficient
demultiplexing
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Air Force Payoff: Demonstration of practical building blocks that are
essential for efficient integrated chip-scale photonic crystal platforms
for WDM, communications, signal processing, and sensing.




%j Novel Devices for Plasmonic and Nanophotonic
o Networks: H. Atwater; Caltech

Major Technical Accomplishments: Fall 2006- Fall 2007
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PLASMONICS. .

: + Optical Hyperlens (transition)
e + 2D Far Field Superlens (transition)

' 8 - PlasMOSter: Si Field Effect Plasmon Modulator
* Plasmonic Electro-Optic Modulation
* Visible Frequency Negative Index Metamaterial e
* Double I'v'_letal Plasmon Enhanced Mid-IR Detectors - I'; o photomcs :
* Plasmonic Quantum Cascade Laser Antenna - Sl PR
- Bowtie Plasmonic Laser Antenna |5
* Opto-Mechanical Plasmon Resonators
* Quantitative Model for InGaN Plasmon Enhanced Emission
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Optical Hyperlens, Zhang, Berkeley . Eyperimental Demonstration of Dimple Lens Focusing =G
Transitions _ _ _ . g ;
. Electro-Optic Plasmonic Materials and Devices i ER=g=
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Electro-optic beam steering and tunable metamaterials
. Hyper-spectral/polarization Mid-IR detectors

Oskar Painter (with Tom Nelson, AFRL).

Enhanced D* and tunable spectral response in MWIR detectors
. Fiber Optic Plasmonic Coupled Antenna Array Device =  PlasMOSter, Atwater, Caltech

Federico Capasso (DARPA Microfiuidics and Plasmonic Systems Center®; Dennis
Polla, DARPA-MTQ)). Ultrasensitive (single molecule) chembio detection using

SERS. http://www.plasmonmuri.caltech.edu/index.html




\z Near-Field Plates: A/20 Focusing at 1 GHz
«<r FY06 MURI: Grbic, Jiang & Merlin, U. Michigan

* an entirely new perspective in electromagnetic field manipulation and control
* sub-wavelength focusing by radiationless interference




%4) Varying Density of BaSnO4; Nanorods:
.« P. Barnes, AFRL/RZ
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%f Tbps/THz-Speed Electronics Vision &

Performance beyond end-of Moore’s Law (Si) projections

Discover novel means of physically representing, processing, storing, &
transporting information at Thps speeds via new materials, processes,
device structures, state-variables, architectures, & computational models.
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\4 2008 “Beyond Moore’s Law” Winter School ,

January 7-11, 2008, Kenting, Taiwan

Main organizer was Dr. Harold Weinstock

Goals:
Bring together world-class researchers and

leaders in alternative materials & technologies &} L w
that are potentially enabling for addressing key | § \m\—/
challenges facing continued increased density §

and faster logic and memory architectures.

Organizers/Sponsors: US Air Force B

Office of Scientific Research, Taiwan
] ] Moore’s Law: “The number of
National Nanoscience Program, Korean transistors on a chip will

. double every 18 months.”
Nano-Technology Research Society Y

Participants: 11 world-class research lecturers; over 75 international
senior scientists, and more than 125 graduate/undergraduate students
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\§j 2008 “Beyond Moore’s Law” Winter School &

L Introduction..........cocovsroescisssirsssscnn,
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Table of Contents

IIL. Abstracts for Invited Speakers

A. Prof. Dai Mann Kim

B. Dr, Chii-Dong Chen

(. Prof. Byung-Gook Park

0. Prof David Awschalom

E. Prof. Raymien Kwo

Interface Quantum Physics and Chemistry: from P-N
Junctions to Schottky Contact in Carbon Nanotube Devices.T
One-Dimensional Nanowires: Transport Properties and
APPICAHONS. v vesssvrssisssssress s s §

Nanoelectronic Information Storage Devices: DRAM, Flash
and Beyond. 9

Manipulating Stngle Electron Spins and Coherence in
Semiconductors 10

Advances fn Oxide Electronics Research: From High Gate
Dielectrics to Diluted Magnetic OXIdes....mmmesesssssses 12

. Prof, Roberto Metlin

Prof. Rainer Waser

. Prof. Eli Yablonovitch

. Prof. Jaw-Shen Tsai

. Prof Konstantin @ K.

Likhatey

. Prof. Philip Kim

... world-class research-instructors

From Negative Refraction to Radiationless Interference:
ANew Road to Subwavelength Photolithographyi..mu. 13

- Redox-Based Resistive Switching Effects for Non-Volatie

= Prospects and Challenges of Molecular Flectronics, ..

Will @ New Mili-Volt Switch Replace the Transistor for

Digital Applications?. 16
Switchable Coupling Scheme toward Scalable

Superconducting Qubits 17
Hybeid CMOS/Nanoelectronic CIretits.mvmemssmmssns 18
Toward Carbon-Based Electronis. 20

... lectures are available on disc per Harold Weinstock



\\gz Critical Issues Facing ‘End-of-Moore’s Law’

** __and Beyond Deeply-Scaled Digital Electronics

Performance is great (speed, flops, etc), but at what
cost to reduced reliability for DoD applications??

« Theissueis more changes in IC technology and materials in past
five years than previous forty years — driven my Moore’s Law
— SiGe, SOI, strained Si, alternative dielectrics, new metal systems
* And reliability has/is being traded for performance!!

» Future space and defense systems will require greater under-
standing of reliability & radiation effects in advanced technologies
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L 2 _ .
§;{ Compact Space Power via Nanoelectronics

Objective: Increase specific power for solar
arrays, fuel cells and power storage systems
for high power space platforms.

Approach:

* Quantum Dots to enhance IR absorption

* Multicharges/photon QDs in Organic Cells
* Thermoelectrics Using Si Nanowires

* llI-Nitrides for Hydrogen Fuel Cell

» Hierarchical Junction Hybrid Solar cells

» Carbon Nanotube Based Supercapacitors
* Organic Photovoltaic Cells w/ Aligned CNT

Payoff:
* Provide Power Source for High Power

Space Assets such as Space Based Radar
and Space Based Laser

* Low cost power for Launch on Demand assets

* Reduce overall satellite weight and
decrease cost of satellite launch

* Enable smaller and more compact satellites

* Increase satellite lifetime, reliability and
capabilities
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Accomplishments

* Total 12 projects ($1.6M in FY07) funded,
including 1 lab task (ML)

* Radiation hardness of Organic cells
demonstrated (AFRL/VS and UCLA)

* 4x increase in energy density of supercapacitors

| (Georgia Tech)

* Demonstrated solar cell with branched crystals
(UC Berkeley)

* Enhanced QD response in the IR active regions
(U of New Mexico)

* Completed the construction of a new cell and
experimental setup for water splitting efficiency
measurement (Kent State U)



