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a history of ultra-fast: breaking the fs barrier S PHYSICS
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% challenges of breaking the fs barrier

® sub-femtosecond = short wavelengths (XUV, x-rays)
single-cycle 25 as pulse = 7.5 nm (~165 eV photon energy)

e uncertainty principle: AvAt = 1 = need bandwidth!!
single-cycle 25 as pulse = 20 x10*° Hz frequency spread

e control the phases of the field, i.e. mode-locking

e attosecond metrology
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the growth of attosecond science S PHYSICS
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 attosecond science can address a broad range of interdisciplinary problems
specifically, electron correlation and strongly damped systems

from ISI Web of Knowledge
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attosecond production approaches S50 PHYSICS

e coherent or cascade stimulated Raman scattering
Kaplan, Harris, Sokolov....

e solid target interactions, non-relativistic/relativistic
Kaplan, Mourou, Naumova....

o 4th generation light sources: XFELs & ERLs

e high harmonic generation from gases
Farkas, Toth, L'Huillier....
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high harmonic generation in gases v PHYSICS

nonlinear frequency conversion: ®, = qgy,
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e intense laser-atom interaction produces a comb of odd harmonic
e harmonics result from the physics of a field-driven electron

e attosecond pulses are formed by Fourier synthesis

e physics needs Schrodinger’s and Maxwell’s equations

e hhg sources are table-top
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attosecond beamline and end-station S PHYSICS
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world-wide attosecond light sources s PHYSICS

e attosecond laboratories are developing world-wide
US (4), Europe (13), Canada (1), Japan (2), Korea (1)
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state-of-the-art attosecond generation S0 PHYSICS

eattosecond pulse train
v'dispersion compensation (Lund group)
130 as, 35 eV
v'long-wavelength fundamental field (Ohio group)
120 as, 200 eV

eisolated attosecond pulse
v'polarization gate, dispersion compensation, CEP
130 as, 35 eV, 0.5 nJ (Milano group)
v'1.4-cycle driver, dispersion compensation
80 as, 120 eV, 0.5 nJ (MPQ-Garching group)
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MPQ atto-streaking for time-resolving Auger decay %ﬁﬁ PHYSICS
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detected electron energy (classical result):
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from Drescher et al., Nature 419, 803 (2002)

b atto pulse
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MPQ Auger decay measurement: Nature 419, 803 (2002) PHYS[CS

e the 90 eV attosecond pulse excites a core electron (3d) in Kr
e the ir-field streaks the energy of the photoelectron & Auger
e energy streak is proportional to the phase (time)

T, =7.920.9 fs
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precision in a time-domain electron interferometer %Eﬁ?gfgfg
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from Mauritsson et al. PRL 105, 053001 (2010)

NAS 2011 April 5



.

@ (@] DEPARTMENT OF

fundamental questions for attosecond science S PHYSICS

electronic response at early times

e universal attosecond response
Breidbach & Cederbaum, PRL 94, 033901 (2005)
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these issues are uniquely addressed by attosecond science
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