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’\| ’"\. Accelerators: drivers for science
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’\I A Accelerators: from handheld to
\H size of a small country

BERKELEY LAB

1929 LHC, 2010

Size x 10° nergy x 10°
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’\‘ A Laser plasma acceleration enables
\| development of “compact” accelerators

m-scale

10 — 40 MV/m

100 micron-scale

T

10 — 100 GV/m

Plasmas sustain extreme fields => compact accelerators
Can this technology be developed for energy frontier machines, light sources,
medical or homeland security applications?
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OUTLINE

® Basic concept of laser plasma acceleration

® Controlling particle injection

® | PA as building block for a hyperspectral source
® |aser technology and investments

® Conclusion

Tuesday, April 5, 2011



~

\
Frreerrerer ‘m
chc

Blow-out or bubble regime: the highly
non-linear regime
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Principle of Laser-Plasma Accelerators
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» E-fields: 10 — 100 GV/m => compact accelerators
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Building a laser plasma accelerator
following conventional linac paradigm

Laser Injector Plasma Channel
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Plasma channel
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» Field excitation

» Accelerator structure and length
» Electron injection
» Laser

Leemans et al., IEEE Trans. Plasma Science (1996), Phys. Plasmas (1998)
Leemans and E. Esarey, Physics Today, March 2009
Esarey, Schroeder and Leemans, Rev. Mod. Phys (2009)
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’\\ Technical challenges in next 10 years
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’\I A Channel Guided Laser Plasma
| \H Accelerators — 2004 result

BERKELEY LAB

Phosphor

Igniter
pulse

Interferometer  Mode imager
10 TW laser => 100 MeV e-beam
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Electron en
C. G. R. Geddes et al, Nature,431, p538 (2004) iy Sen
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’\ ...‘ Going to higher beam energy ¢h\'si(‘s
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= Gas ionized by pulsed discharge
i Peak current 200 - 500 A
: Rise-time 50 - 100 ns
N / |

\&

D. J. Spence & S. M. Hooker Phys. Rev. E 63 (2001) 015401 R; A. Butler et al. Phys. Rev. Lett. 89 (2002) 185003.
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A GeV module...
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’\ A Channel Guided Laser Plasma
* Accelerators — 2006 result

||‘
BERKELEY LAB —

40 TW laser => 1 GeV e-beam
Experimental set-up

namre

Long-distance relationship
for photon pairs

Tuesday, April 5, 2011



OUTLINE

® Basic concept of laser plasma acceleration

® Controlling particle injection

® | PA as building block for a hyperspectral source
® |aser technology and investments
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\‘ A Operation in bubble non-linear regime:
limited control

BERKELEY LAaB

Distance= Omm=  0Z,
Energy, .= 0 MeV = High gradients

= Can produce narrow energy
spread beams

BUT
= Limited control

= Self-trapping (dark current)
= Can easily go unstable

Courtesy of W. Mori, UgLA
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\ Electrons surfing on a wave: controlled
FrfFErrrrrs i . .
= Injection
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BERKELEY LAB
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"\ Integrated injector and accelerator for stability,
' improved beam quality

_.

= Couple (short, high plasma density) injector to (long, low density) plasma channel:

n Injector, ~mm, n~101% cm-3

-
-

&

~GeV
electron beamm—>

\

N

- J
YT

accelerator: ~cm, n~10'8 cm-3

=  Two effects control wave’s phase velocity:

= Negative density gradient -> plasma wavelength increases

= Laser focus -> relativistic self-focusing results in plasma

wavelength increase (decrease) before (after) focus

A.J. Gonsalves et al., submitted
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’\l \ Practical implementation of combined

injector and acceleration stage
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Energy variation <1.9 % rms

Charge variation < 4% rms

Divergence change < 0.57 mrad rms

420 30 Charge density (nC/MeV/SR)

Tunable electron beams produced via laser
focus control using jet+capillary module
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A.J. Gonsalves et al., submitted Energy (MeV)
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'\‘ A Tunable electron beams produced via gas jet

~ pressure control in integrated structure
(BERKELEY LAS RN
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A.J. Gonsalves et al., submitted 20
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® | PA as building block for a hyperspectral source
® |aser technology and investments
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Unique bunch parameters enable wide range of forefront applications

* Bunch properties:
— Ultra-short electron bunches, high peak current (multi-kA)
Intrinsic synchronization with laser pulse
* Direct use of e-bunches:
— <10 fs intense magnetic field

Ultrafast pulse — use electron accelerator

— < 10 fs intense electric field

. . ~5um 2 -10 ps
e Radiation sources: 5 O ”
clcctlon
— Coherent terahertz emission bunch
— XUV generat—ion C. H. Back et al., Science 285, 864 (1999)

— X-rays and gamma rays
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. Radiation from THz to Gamma Ray —
I synchronized and ultra-short

BERKELEY LAB :

L/

FreErrsrexs

Betatron radiation during
acceleration — Multi keV

Transition radiation from beam
exiting plasma — MV/cm THz

Thomson Scattering — Multi keV/ Ii[[[lf

MeV x-ray/gamma ray Free Electron Laser-> XUV, x-ray
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Intense THz source

* 0.01-10 MV/cm at focus (up to 10’s
of uJ in THz pulse)

e ‘traditional’ laser-based sources
deliver <100 kV/cm

Leemans et al. PRL 2003; POP2004; IEEE2005 Schroeder et al., PRE 2004;

van Tilborg et al., Laser Part. Beams2004; PRL2006; POP2006; Optics Lett. 2006
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]
developed

Temporal Electric-field Cross-correlation (TEX)

/‘“\l v Single shot THz detection technique

Matlis et al, Submitted to JOSA B TEX-ogram
Chirped Short
J — Pulse Polarizer

Modulated Probe ¢ spectromete

M4 plate E-field: E(t) EO Xtal

Leemans ef al., Phys. Rev. Lett. 91(7) 074802 (2003)
Schroeder et al., Phys. Rev. E 69, 016501 (2004)
van Tilborg et al., Phys. Rev. Lett. 96, 014801 (2006)
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; ’\‘ . THz from Laser Accelerated Bunches
| ready for “user” experiments

* THz source properties

- DOE-NSF-NIH Workshop on Opportunities in THz Science
* ETHz ~ 1-5 MV/cm ' February 12-14, 2004

/\
- High frequency 0.5-10 THz e

* Intrinsic synchronization with

laser, electrons, x-rays, etc.

* Single shot time-space resolved
THz waveform measurement®

* Pump-probe experiments:

« Superconducting material studies

(e.g., breaking of Cooper pairs)

* Non-linear carrier dynamics in
semi-conductors

* N.H. Matlis et al., JOSA-B 2011 26
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World-wide effort aimed at FEL using laser accelerator
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= Beam quality:

A4Sl = Energy spread, emittance, peak current |
_reee—x= " Seeding for temporal coherence |
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Fm Beam brightness studies are underway

BeErRKELEY LAD

Transition radiation from beam
exiting plasma — coherent THz

= Bunch duration:

= Fluctuational interferometry (Catravas et al., PRL 1999)
»= THz radiation -- upper bound (van Tilborg et al., PRL2006)

= (Coherent OTR -- mm scale distance from LPA
(Glinec et al., PRL2007, Lundh et al., NP 2011)

= Emittance & energy spread: '}fq%@: ¥ 4

5 W IR A
iy o g
. . :%ea.:'. i iﬁ;»é, g}%”:ggé;
= Betatron source size and e-beam divergence (Plateau et o m,, AR o
3
al., in preparation ?ﬁ? ‘,r ‘ ,
| prep ) | ‘.z},u ;;94*‘ .1%{
= Slice energy spread via coherent OTR (COTR) --
meter scale distance from LPA (Lin et al., submitted) Coherent Optlcal radiation

= Undulator based diagnostic . .
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. Ultra-low emittance of electron beam is deduced from

—— ‘\ x-rays produced by electrons inside LPA
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\I A Undulator radiation experiment:
‘\H towards an FEL powered by LPA

E
Single shot energy spread and emittance diagnostic

@ 3
clear 1 outer
aperture: diameter:
5 mm Q 35 mm
2 : Blazing
. Incidence
I ¢ > I IC b . Grating

25 and 50 mm Quads

Capillary ] z \ | B TN
‘ \ —g . Magnetic
N ) pectrometer

BPM & OTR Single-shot XUV Spectrometer

THUNDER Undulator
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— \
‘M Experiments on seeding the FEL being planned

BERKELEY LAB

Gas-based HHG

Benefits of HHG seeding FEL

» Reach saturation at shorter distance
« Stabilize output flux
 Improve temporal coherence
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BERKELEY LAaB L

40 J, 100 fs plasma channel 7.7 GeV. _
1 Hz beam a
- \NNVVWNVVVWV\N—— FEL output

LPA electron beam: 1EH 12— T 3
Beam energy rrGev | el Ginger simulation |
Peak current 30 kA =3 3 ‘
Bunch length 20 fs A 1.E+10k .
Relative energy spread 10-3 é : 3
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o ] 3
£ 1.E+08} 4
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Laser-plasma accelerator driven
soft x-ray FEL at 1 nm

Undulator ~ 15 m

Undulator length (m)




)\I ’..\, BELLA Facility: state-of-the-art PW-laser for
laser accelerator science

Control Room Gowning Room BELLA Laser

Compressor

High power diagnostic
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BELLA is expected to be available by summer 2012

>14 J GAIA pump laser .
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rerers) '?i" BELLA laser opens significant opportunities

Lorentz boosted frame simulation

Full 1 m BELLA stage -- major advance
Courtesy of J.-L. Vay
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2013 Experiments
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|
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40 fs o

« Light source development
- 10 GeV Module as driver for 1 nm seeded soft x-ray FEL

m W. Leemans et al., AAC2010 Proceedings
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® Basic concept of laser plasma acceleration

® Controlling particle injection

® | PA as building block for a hyperspectral source
® |aser technology and investments

® Conclusion
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‘\l \ Concepts are being explored towards a

\"" Laser Plasma Linear Collider
[BERKELEY LAB
Lﬂser * . Eh%on
@ >

_ og,
-~ ’h,
Dnuary 6 T ages
A\§: Tey,
lage, o |
|

n

= Injector techniques g
= Staging techniques N
, L
= Bunch properties eJ v )
= 10 GeV module o T |
.

= Collisions, synchrotron losses, efficiency, etc

W. Leemans and E. Esarey, Physics Today (2009); C.B. Schroeder et al., PRST-AB 2010
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Laser requirements:

Peak power vs. Rep rate

LA
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Novel l[asers and materials are being developed

» Diodes and small qguantum defect materials 0
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Laser-plasma accelerator based hyperspectral user
facility

Compact, intrinsically synchronized hyperspectral source covering THz to gamma
rays using laser based sources and laser plasma accelerators (LPA)

 Builds on know-how and technology for new accelerators

* New paradigm: single laser system driving multiple tunable compact LPAs

Seeding

Ao m
A—l ~3-100 cm x - Yrdrtator >

(EEERERRRRRRRRRRRRRRRRRRRRRRRNURNNI]
elg’ctmn T XUV
cam
A—l ~3-100 cm = * > Lidutator > |
(EEEEERERRRRRRRRRRR AR R AR AR ERR AU AN
J X-rays
(EEEEERRRRRRRRRRRRRRRRRRRRRRRNUUNLL]
plasma [ rm
channel
25-35m
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www.eli-la

- ]Coumer

| Major mvestments
; - Example: European Extreme Light Infrastructure
, - Four pillars (three funded at 790Meuro):

\ 1. attosecond and XUV science: Hungary

% 2. High-brightness x-ray and particle sources: Czech Republic
3 Photo-nuclear science, transmutation,.... Romania

4, UItra-hlgh |ntenS|ty smence (non- I|n QED) ??77?

4.“

— e &

ELlI's
2 grand
chaHenges

www.eli-laser.eu
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([l Research Facilities of ELI
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sy plasma physics, exotic physics
o
I? , : 5 Laser-induced nuclear physics s |
" uclear Physics Facility M| o ioncear scence and agurele
applications RO
§

Extreme-intensity Exawatt-class laser technology & c\te
» High-intensity laser technologies fi \ -“ed
development frontier physical research‘ ed\‘\iodge‘pﬂ;‘\\

‘
a@ X0 ofe’ 20

Courtesy of K. Osvay -
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Conclusion

» Laser plasma accelerators are reaching AMO relevant performance
- High peak field THz for non-linear carrier dynamics, superconducting R&D
- Direct e-beam based magnetic switching

- FEL proof-of-principle experiments, including seeding + user experiments

» In 5-10 years: BELLA style technology based user facility for peak power

hyperspectral source apps
» User apps will require investment in high average power laser technology

- Multi-kW 100 TW to Petawatt-class lasers

- Sustained, long range R&D needed with major investment in high peak
power lasers, novel materials and fiber timing technology & partner with
universities, labs and industry

- Major investments being made overseas

» Exciting times to work on accelerator and laser driven science
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