Beyond 1 PW: What is the next step in ultraintense laser physics and technology?

Presented by:

Todd Ditmire

Center for High Energy Density Science Department of Physics University of Texas at Austin

The power that a laser can deliver has increased roughly by a factor of 1000 every 10 years

New and Exotic Physical Regimes Can Be Accessed With Ultra-High Intensity Lasers

The science enabled by an exawatt laser is likely to be exotic and exciting

- Hawking Unruh radiation
- Vacuum birefringence
- Vacuum pair production ("boiling" the vacuum)

The quiver energy of electrons at relativistic intensity mimics MeV temperatures and lead to pair plasmas

A multi- PW laser could enable wakefield acceleration to > 10 GeV

Multi - Petawatt LWFA Parameters:

$n_{resonant} \sim 3 \times 10^{17} \text{ cm}^{-3} (P_{He} \sim 5 \text{ Torr})$	\Rightarrow negligible ionization distortions
$L_{dephasing} \sim z_{Rayleigh} \sim 25 \text{ cm}$	\Rightarrow long accelerating length
$E_z \sim 0.5 \text{ GV/cm}$	\Rightarrow large accelerating field

Multi-PW lasers may lead to multi-GeV electron ejection upon highly charged ion production

At sufficient intensities it should be possible to observe the optical nonlinearity of vacuum

Atom/vacuum subject to an oscillating field $E=E_0 sin(\omega t - kz)$

With a 10 PW laser it might be possible to observe birefringence of the vacuum

Reaching how powers in CPA require temporal phase control and broad bandwidth gain

Petawatt lasers of differing specifications are needed to access a wide variety of science applications

- Push to shorter pulses or higher pulse energy?
- Utilize Ti:sapphire or some other gain medium?
- Can OPCPA be employed all the way to an exawatt?
- How can 10 PW to exawatt pulses be compressed?
- What will it cost to build a 10 PW laser or an exawatt?

Using hybrid OPCPA/Mixed laser glass technology, ~100 fs PW lasers at E> 100 J are possible and it is possible to build a 10 PW laser on this technology now

The Europeans have initiated an EU funded project to build multiple 10 PW-class lasers

Three ELI Pillars

 Bucharest, Romania: ELI - NP Devoted to nuclear physics with intense lasers and gamma beams

• Prague, Czech Republic: ELI - CZ Devoted to work on electron acceleration

• Szeged, Hungary; ELI - AS Devoted to attosecond pulse generation

The current state-of-the-art ultrafast, ultraintense lasers tends to fall into two categories

Pulse energy ~ .001 - 30 J, Pulse duration <30 - 100 fs, Peak Power < 100 TW; 1 PW Repetition Rate ~ 1 kHz - 1 Hz

Shortest pulse systems and most "table-top" CPA lasers

Nd:glass based CPA lasers

Pulse energy 10 - 1000 J Pulse duration > 100 fs Peak power 10 - 1000 TW Repetition rate ~ 1 shot/min - 1 shot/hr

Highest energy systems, many of "facility" scale

Ti:sapphire has advantages and disadvantages in high power CPA lasers

Gain bandwidth in Ti:sapphire is very large → amplification of pulses as short as 20 fs

High quality Ti:sapphire can only be produced with aperture up to ~10 cm

Large scale Ti:sapphire crystals

ILE – APOLLON 10P : A french TiSa project Compressor (Back up solution)

Extremely expensive : 4 gratings (1.1M€), long delivery (18months), need 2 expensive collimators (up and down)

*R&D in progress with CRYSTAL SYSTEMS based on HEM to grow size up to 8"

Last result (July 2008)

ILE #4 in the evaluation process. After processing, the boule diameter is 192 mm, and the height is 122 mm.

Crystal Systems (GT Solar) uses the HEM technique since years to grow blank sapphire as well as Ti doped sapphire.

3 years ago the maximum size was ~ 15 cm in diameter

A study has been funded by ILE to obtain rough boules of 20 cm

TiSa crystal family from 15 m m à 175 mm

Nd:glass is very attractive for high power lasers because it can be fabricated with large aperture

Direct flashlamp pumping (and ultimately direct diode pumping) have many attractions for high peak power

The first Petawatt laser was demonstrated at LLNL by implementing CPA on the Nd:glass NOVA laser

The Petawatt at LLNL

Nova laser

Petawatt specs: 500 J energy 500 fs pulse duration Peak intensity > 10²⁰ W/cm²

Information derived from M. D. Perry et al "Petawatt Laser Report" LLNL Internal report UCRL-ID-124933.

90 cm gratings to compress Nova pulses

The principal limitation to the use of Nd:glass in CPA lasers is that it exhibits limited gain bandwidth

Calculation of the effects of gain narrowing in Nd:glass

Gain narrowing of the ultrafast pulse spectrum tends to limit Nd:glass CPA lasers to pulse duration of 500 fs

We have chosen a route to 1 PW by mixing glasses and aiming for ~ 100 fs pulses

Mixed glasses combine to yield a broader amplification spectrum.

Nd:glass amplification

- Limit glass amplification to 2 orders of magnitude to minimize spectral gain narrowing.
- What is the optimum gain ratio between the 2 glasses?
- At what wavelength should the amplifier be seeded?

Optical parametric amplification in CPA (OPCPA) offers the potential for very broadband amplification

Photon Description of OPCPA

The Texas Petawatt design is based on a 3-stage OPCPA amp and a mixed glass chain

The layout of the amplifier section is compact and rests on four interlocking tables

The MLD gratings in the TPW perform well with high diffraction efficiency and ~90% throughput

We presently we shoot >1.3 PW on target during the last experimental run

The hybrid mixed glass architecture can be scaled to 10 PW with existing technology

High energy amplification occurs in two stages employing silicate and phosphate slab amps

MANN.

The OPCPA section can be staged with Intrepid pump lasers arranged as spokes off the main chain

The silicate and phosphate glass amplifiers are arranged in a double pass configuration

We are investigating liquid cooling the faces of glass slabs as a means for dramatically increasing rep. rate

This technology will permit operation of large aperture (~ 30 cm) Nd:glass slab amplifiers with rep. rate at least one shot per minute

The compressor is constructed from 4 pairs of phased MLD gratings

The hybrid mixed glass architecture would enable construction of a compact 10 PW laser

Mechanical Engineering conception of the 10 PW Hybrid Mixed glass laser

Laser output: Energy: 1500 J, Pulse duration: <150 fs repetition rate: 1 shot/min Laser Wavlength: 1054 nm Temporal pulse contrast: 10¹⁰:1 at > 10 ps

The high energy amplifier architecture of a near term mixed-glass 10 PW laser could be based on Beamlet

Z-Beamlet laser at Sandia National Laboratories

The idea of tiling multiple gratings for compression of 1 μ m pulses has been demonstrated at Omega EP

Two-grating phased array at the U. of Rochester

Pulse compression data using the two grating array (U. of Rochester)

Commonly available Nd:glass is NOT the optimum glass for broadband CPA

LG-680 Silicate glass

Peak Wavelength: 1054 nm Peak cross section: 4.3 x 10⁻²⁰ cm² Linewidth (FWHM): 21.1 nm

Peak Wavelength: 1061 nm Peak cross section: 2.9 x 10⁻²⁰ cm² Linewidth (FWHM): 28.2 nm

Nd₂O₃ ~3% P₂O₅ ~ 97%

Nd₂O₃ ~3% SiO₂ ~ 97%

Different laser glasses could enhance the bandwidth of a mixed glass laser chain

This glass could enable sub-100 fs large scale lasers

Novel glass bandwidth FWHM: 38 nm (x2 that of Phosphate)

Realistic amplified bandwidth: >20 nm Corresponding best compressed pulse: 80 fs

New glass performance could make rep-rated glassbased systems operating at 80 fs

Using these new glasses, a 120 fs, 120 kJ exawatt laser should be possible with existing technology

The architecture of a mixed glass exawatt laser would be straightforward

A hybrid approach to an Exawatt laser has many advantages to other approaches

	Glass	Hybrid	TiSa	OPCPA
Pulse duration [fs]	1000	120	30	30
Pulse energy [kJ]	100	12	3	3
Compressor efficiency	MLD 90%	MLD 90%	Gold 65%	Gold 65%
Grating damage fluence, beam normal [J/cm ²]	3	1	.35	.35
Final stage extraction efficiency [%]	100	100	50	40 seed 40 idler
Energy out of final amplifier [kJ]	111	13.3	5.1	5.1
IR energy out of pump laser [kJ] [50% doubling eff.]	-	-	20.4	25.6
Min. beam size (normal to beam in compressor)	(3.33 m) ²	(1.16 m) ²	(1.21 m) ²	(1.21 m) ²

All compressors require tiled gratings as demonstrated by LLE, LIL,...

- The science case for moving toward 10 PW needs to be ascertained
- New materials should be explored for potential push toward 1 EW
- More work needed on tiling large number (~9 or more) of gratings for large aperture compressors
- Phasing numerous CPA beams to increase on-target intensity
- Liquid cooling of glass slab amplifiers for development of ~ 1shot/min multi-PW to EW lasers

Question

