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Precision measurement tools were
once mechanical oscillators

The Cavendish balance
Huygens pendulum clock ~ for weighing the earth
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Modern measurement tools exploit optics
and electronics, not mechanics

Laser light electricity
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Optical and electrical measurement tools:
Large dynamic range
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Compact, high-Q mechanical oscillators are
ubiquitous in information technology

I 1 mm
Quartz crystal oscillator: Surface acoustic wave filters:
In everything electronic In radios, tuners, mobile phones
Applications: sound speed << light speed
Timing and filtering Compact and high-Q oscillators
Q ~ 100,000
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Optical probes are Iill-suited to directly
measuring many interesting systems

N nuclear spins electrons In an

~ - -
~ o Inavirus aluminum ring
Y GEWIERZEL))

Systems with:

optical or
electrical
probe

dense low-energy spectra
nanometer length scales

weak coupling to light
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Mechanical oscillators enable
measurements of non-atomic systems

mechanical
Intermediary

Systems with:

dense low-energy spectra orobe field

nanometer length scales

weak coupling to light
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Mechanical oscillators are tools that access
the nano-world

Atomic Force Microscope

Perkins lab, JILA

Mechanical oscillator
nanometer probe
universal coupling (senses any force)

Optical interferometer detects oscillator motion Tj‘?r ,g\r
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Mechanical oscillators form ultrasensitive,
mesoscopic magnetometers

Ultrasensitive
cantilever

interferometer

i
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A Microwire
’J\ Magnetic tip C
X ¥

nanoscale MRI of a single virus
Rugar Lab, IBM S;Ot =0.8 aN/Hz"*




Mechanical oscillators as quantum coherent
Interfaces between incompatible systems

Mechanical oscillators are classical

quantum
system

Kg T >>1 Quantum regime
os estate preparation
estate measurement
estate manipulation

Cleland group UCSB

Nature 464, 697-703 (1 April 2010)

mechanical
oscillator
ho,,

guantum
probe

environment
kB-I—bath




Cavity optomechanics: Use radiation pressure for
state preparation and measurement

Fabry-Perot cavity with
oscillating mirror

Infer motion through optical phase

Cool with cavity-retarded radiation force

N

N

H =ho,(a'a+1)+70, (b'b+4)+H

H, = F-x=na'agx,, (b" +b)

g%, =G ~21x10 Hz

e N (08
Aspelmeyer lab, I0QOI, Vienna Tj_,



Images of cavity optomechanical systems

Caltech, Painter
G~2nx1 MHz

EPFL, Kippenberg

UCSB: Bouwmeester

ENS: Pinard and Heidmann PR I
MIT, Mavalvala
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Microwave cavity optomechanics



Reduce coupling to the environment by lowering
temperature: microwave optomechanics

Microwave “light” in ultralow temperature cryostat

<— coupling—
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m = ;¥§ <— cavity

K J, LC oscillator Fabry-Perot cavity
é m
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Cool environment to T, << 1K (y j Kg Toath

Strategy
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High Q mechanical oscillators
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Superconducting electromechanics used Iin
resonant mass gravitational wave detectors

Reentrant  Gap of : -
Microwave Measu‘ring E:gg?ﬁg?s Meter sized . _
Cavity Capacitor superconducting cavity

I"'// T A with mechanically
<{/’ \\ \k\ \\“/ compliant element

ﬁs

Cavity Excitation In  Signal Out

Braginsky, V. B., V. P. Mitrofanov, and V. |. Panov, 1981,
Sistemi s maloi dissipatsei (Nauka, Moscow) [English translation:
Systems with Small Dissipation (University of Chicago,
0 P r’

Chicago, 1985)]. T
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Resonant electromechanics used in survelllance

Soviet passive bug hidden in the United States Seal

I Maphragm

In the UN

Images appear in http://www.spybusters.com/Great_Seal Bug.html
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Cavity optomechanical system realized from a
nanomechanical wire in a resonant circuit

— .
G=2nx0.3 Hz
Wire response _

S microwave

10 ' ' resonant
Q,,=300,000 circuit

3

07 De =7 GHz
2T
10| | | k = 200 kHz
1.524 1.525 1.526

drive frequency (MHz)



Parallel-plate capacitor geometry enhances
microwave—mechanics interaction

capacitor built with suspended
micromechanical membrane*

Electrical circuit
resonant at 7 GHz

Lo P & & G ~ 27[ X 50 HZ
*K. Cicak, et al APL 96, 093502 (2010) ﬂi’ F’r ‘ Q\Y

. J. D. Teufel et al arXiv:1011.3067 o A




Nanomechanical motion monitored with a
microwave Mach-Zehnder interferometer

phase reference
o 0
? N/t —> ?
Wy AN '

Infer wire motion from phase shift

A(I):ACOC _ O
K K

Phase sensitivity limited by amplifier (HEMT)
- N,+% noise quanta e
N/t  photon flux A=Y
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Thermal motion of beam calibrates
Interferometer noise (imprecision)

Minimum imprecision
S!™ =145 ZPE
S!™ =290 xSQL

Imprecision at the SQL

R - :.- .’ r * W L
e -t N 4 .l e o h
' St =
O " " X B

1.52505 1.5251 M,y
frequency (MHz)

Determine measurement imprecision S)'(mp

0 P r’
C. A. Regal, J. D. Teufel, KWL Nature Phys. (2008) T
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Amplifier added noise mimics quantum
iInefficiency

~

Excellent microwave amplifier:
N,=40 n=1.2%

A
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Efficient guantum measurement



Linear amplifiers must add noise

X, S AQ) :Vq(xlcosa)t+ X, Sin a)t)

Vout :G(\/in 4 NA)

Xl

Phase-preserving linear amplifiers at least N,
double guantum noise
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A single quadrature amplifier preserves
entropy with photon number gain

INne—N,, G out

V(t)=V, (chosa)t + )22 sin a)t)

R~ GR

VN 1 N .

X out — x In
2 G 2

7 out \7 out 7 out \y out __
Xl Xz _Xz Xl T n

N, >0
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Incorporate quantum pre-amplifier into the Mach-
Zehnder interferometer

je—

ﬁ JPA HEMT

%/ N N
Ny =N, + C:EMT
JPA
v

Josephson parametric amplifier (JPA)
makes more photons without more entropy

—/ 300

A
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Diagram conceals some complexity

Dilution refri_gerato_r

50 cm

mechanics

JPA

1w A



Realization of Josephson parametric amplifier

«— Signalin
pump —> ..
—s amplified

; \ {_ somalon

oump port Kerr medium  signal port

TTITTECETETE: I 30 um

N, <0.1 array of 480 SQUIDs
embedded in a CPW resonator

M. A. Castellanos-Beltran, K. D Irwin, KWL, et al, Nature Phys. (2008) T ﬁgﬁ*lgjlu—s



Imprecision noise Is below the standard quantum
limit with the JPA

10000¢

Qn.]:131,5.00- S /Ssq' — (.83

T =131 mK

JS¥ =5.7 fm/v/Hz

1.038 1.04 1042 1.044
frequency (MHz)

0N A
J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, T . AY
J. Harlow, KWL, Nature Nanotech., 4, 820-823 (2009). T



Detecting near ground state motion requires a
guantum efficient interferometer

HEMT only

~N
L
?g resolve n=0.1
;;200- 10 minutes with JPA -
o1 week with HEMT
efficient
Interferometer
(JPA) A
0 10.526 10.528

rm’

Frequency (MHz) Tj AN



Radiation pressure cooling



Radiation pressure can cool the beam to ground
state in the resolved sideband limit

(Dm—> [€<— .
N4 cavity photons
from cooling drive

cavity lineshape

DOS HAl :hgxzp(aTabT+aTab)

‘ > O
(DC

linearized interaction around strong cooling drive

i, :hGN(abT+aTb) I — 4N,G* A
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Radiation pressure changes the wire’s
damping rate and resonance frequency

0 40

A —| |< detuning amplifying
>0l i.drlvmg .
’Y ®
0'cooling
> ® damping
20 ping .

Mechanical response measures
antisymmetric force noise

X

= hZ; [S; (®,) - S (-o,)]

f =hGa'a G=2nx0.1Hz

F. Marquardt et al., PRL 99 093902 (2007) Tﬁ_j%r



Coupling to radiation Is too weak to cool wire to
motional ground state

1 [ i i :
L T,... = 50 mK !
bath : KeT 700
- =140
L L (Dm
0.001 1.525 1.5252
Frequency (MHz) —

A
J. D. Teufel, J. W. Harlow, C. A. Regal, KWL Phys. Rev. Lett. 101, 197203 (2008). j rﬂr‘



Use parallel-plate capacitor geometry to enhance
coupling In microwave optomechanics

capacitor built with suspended
micromechanical membrane*

Electrical circuit
resonant at 7 GHz

*K. Cicak, et al APL 96, 093502 (2010)
. J. D. Teufel et al arXiv:1011.3067
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Thermal motion reveals large coupling
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Cooling mechanics to motional ground state

100
10}

N n=22 A
L
E 1 n=85 { [N
2 n=2.09

0.1 !

n=0.93 Increasing strength
l......._...._.._....--—-——'—*-—-—--l
0.01 of measurement

10.5525 10.5575

and cooling
Frequency (MHz)
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Cooling mechanics to motional ground state

-13
10 n= 093 A . ]
fE\ n=0.55 > 5 )
T10™ n=036
7ol n= 038 _
Gl/m
5 - " , ground state and
10 10.4 106 strong coupling

Frequency (MHz)

0 P r’
J. D. Teufel, T. Donner, KWL et al Nature, 475, 359-363 (2011). T cu_,



Manipulating mechanics with

microwave



Strong coupling enables coherent control of
mechanics

0 5 10 15 -
time (us) Tj rcw



Agile state control provided by extreme
resolved sideband limit

ot O

% ®,, / k=50
2 0 O, K
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cavity preparation

—> cavity — mechanics interaction N (t)
H, = #G/N,(t)(ab’ +a'b)

linearized phonon — photon interaction
* beam splitter
e time dependent rm’
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Mechanical oscillators are long-lived coherent
memories

4 prepare swap NEESIE
— >
Plo, —o, ) i |
>
5 ZOX(an
. K
>
E 0jmmamemm— ) }.
3
5|
-50 0 50 100 150 2400
time (us) rm’

Ttz X



Mechanical oscillators are long-lived coherent
memories

4 prepare swap measure
— >
Plo, —o, ) i |
>
S 20 x ( ZTCJ
. K
>
£ Oy e et
<3
-5t
-50 0 50 100 150 200
time (us) 4 rr

Ttz X



Mechanical oscillators are long-lived coherent
memories

2
9 o
E 1 * .
=3 . .
% 5 10
tint(us)

Ramsey like oscillation in coupled
microwave-mechanical system
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Quantum states of the micro-drum harmonic
osclillator are long-lived

T,=6.1ns
1/T1 = nbath'y

Cleland group UCSB

Nature 464, 697-703 (1 April 2010)



Microwave to optical quantum state transfer

Hofheinz...Martinis, Cleland, Nature (2009)

Microwaves: -
Arbitrary quantum states -
Require ultralow temperatures

Optics:
Communication and storage



Ingredients for two cavities coupled to one
oscillator

$ou o

Si;N, membrane

(1,1)
dielectric m

Membrane in free-space cavity  \jechanics and optics
Superconducting LC circuit couple to different antinodes
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Conclusions

Measure, cool, and manipulate nanomechanical elements
with microwaves

» Optomechanical performance: in quantum regime!
cooling: 0.35 phonons IR
imprecision: 0.83 X SQL At
force: 0.5 aN/Hz'/2

 Microwave Mach-Zehnder
Interferometer
guantum efficiency 30%

Funding: NSF, NIST, DARPA QUEST, DARPA QUASR, NASA
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