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2001

A 6fs pulse Bardeen and Shank in 1987; Sub-6fs Baltuska and Weirsma 1997

Computer-controlled phase amplitude pulse shapers demonstrated 1994,
Commercially available after 2001.

“Smart photons, from ultrafast shaped pulses,

MARCOS DANTUS could revolutionize techniques such as laser
machining, laser deposition, and laser

LASER CONTROL OF desorption.”
CHEMICAL REACTIONS

“The ultimate goal of this research is to produce
an automated protein-sequencing apparatus.”

Scientific and technological breakthroughs
breathe renewed life into area of study

Also accomplished in early 2000’s

» Automated pulse compression
» Coherent communications with fs pulses
» Functional imaging to detect cancer

» Detection of warfare agents

M. Dantus, Chemical & Engineering News 79, 191-191 (2001)



Coherent control or quantum control in physics,

chemistry and optics
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1. Introduction

Number of publications in ISI database

2. Progress in Quantum Control 5 _[nOUIIL
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a. Wave packet manipulation 3888533988887
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b. Interference between laser pulses and wave packets
c. Selective two-photon excitation, CARS, SRS, electronic and vibrational control

3. Challenges in Chemistry
a. Chemical reactions
b. Coherent Control of Electrons, Electronic States and Electronic Transitions
c. Breaking strong chemical bonds while leaving weak ones intact
d. Determining the role of coherent quantum processes in nature

4. Future Outlook and Applications
a. Phase Control of Advanced Sources
b. Quantum control-based molecular sensing and diagnostics
c. Material Synthesis and Material Processing
d. Connecting the Macro-Micro-and-Nano Worlds

e. Coherent control and communications and information processing. Internet is incoherent




A Brief History of Quantum Phase Control

Young'’s double-slit experiment (1803), although it is just linear interference

" oc cos (4,

Brumer and Shapiro propose one vs. three-photon quantum control (1986)

P oc ‘e% +e"

) . 2
3 :
P oc ‘e'% +e' ¢1‘ oc cos (¢, —3¢,) (One final 3w, narrow frequency)
Weiner demonstrates Optical Code Division Multiple Access (CDMA) (1988, 1990, 1998)

(using inversion symmetry of binary phase codes to maximize SHG at 2 w,)
Gordon Experimental demonstration of one vs. three-photon control (1997)
Silberberg demonstrates multi-chromatic two-photon control (1998)

.o - 2
P (A) oc ‘ gll@-2)-ded)lq " (One final A narrow frequency)

P(2wo ) _ J‘ei[¢(wo—A)+¢(wo+A)]dA‘2 (One final narrow frequency 2 «y)

Weinacht, Ahn and Bucksbaum “write-read” on sculpted Rydberg wave packet (1998)



MIl for other nonlinear processes

Two-photon excitation

E® (Za))oc T‘E(a)+Q)HE(a)—Q)‘exp[i{(p(a)+Q)+(p(a)-Q)}]dQ.

—00

N-photon excitation

n-1

E(a)+Ql)‘...‘E(a)+Qn_1)HE(a)—Ql)‘...‘E(a)—Qn_l)‘x

exp{i [go(a)JrQl)+...+go(a)+Qn_1)+¢(W_Ql)---+¢(m_9n-1 )]}

Selective two-photon excitation, SHG or SRS using Binary Phases 1

. . 7
E®(2w) o« J. E(w+Q)E(0-Q)Q =_J;exp[i{(p(a)+9)}]exp[i{(p(a)—Q)}]dQ: > EE,

—0

J.Phys. Chem. A, 106, 9369, 2002. J.Chem. Phys. 118, 3187 (2003) Opt. Express, 12, 1061 (2004).
ChemPhysChem, 6, 1952 (2005), Physical Review A 74, 041805(R) (2006)



Intensity [arb.units]
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2-Photon absorption [arb. units]

“An atomic switch!” (P. Bucksbaum, Nature)
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Two-photon excitation vs. position of a step phase
function. No enhancement observed at 0 detuning.

D. Meshulach, Y. Silberberg, Nature 1998, 396, 239-242



Lozovoy and Dantus multichromatic multifrequency n-photon control (2002-)

Multiphoton Intrapulse Interference
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J.Phys. Chem. A, 106, 9369, 2002. J.Chem. Phys. 118, 3187 (2003) Opt. Express, 12, 1061 (2004).
ChemPhysChem, 6, 1952 (2005), Physical Review A 74, 041805(R) (2006)



Brief Review of Pulse Shaping Technology

Chirp Rate (THz/fs)

Time Domain
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Directly shape E(t)

using ultrafast processes

Stavola,

Agostinelli, Sceats, Appl. Opt. 18,

4101 (1979)

J. G. Fujimoto and E. P. Ippen, Opt. Lett. 8,
446 (1983)

Bartels,Weinacht,Wagner,BaertschyGreen,
MurnaneKapteyn, Phys. Rev. Lett. 88, 013903

(2002)

Frequency Domain

E(t) Fourier Transform N E((())
Shape

Eout ( C()) Inverse Transform N EoUt (t)

Desbois, Gires, Tournois, IEEE J.
Quantum Electron.QE-9, 213 (1973)

Agostinelli, Harvey, Stone, Gabel, Appl.
Opt. 18, 2500 (1979)

Froehly, J. Opt. (Paris), 12, 25 (1981)
“The Fourier Plane”

Weiner and Heritage, Rev. Phys. Appl. 22
1619 (1987)

Weiner, Leaird, Patel, Wullert, Opt. Lett.
15, 326 (1990)

Wefers, Nelson Opt. Lett. 20, 1047(1995)

Commercially available:

Biophotonic Solutions Inc.

Freq. and Time Domain

Shape a combination of
E(t) and E(®)

Haner and Warren, Appl. Phys. Lett. 52, 1458
(1988)

Fermann, da Silva, Smith, Silberberg, Weiner,
Opt. Lett. 18, 1505 (1993)

Verluise, Laude, Cheng, Spielmann, Tournois,
Opt. Lett. 25, 575 (2000)

Commercially available:

Fastlite



Multiphoton Intrapulse Interference Phase Scan (MIIPS)

MIIPS SetuP Spectrometer
NN N SHG crystal
Q Femtosecond Laser[< |Shaper
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Opt. Lett. 29, 775 (2004) Laser Focus World 43, 101, (2007)
JOSA B 23, 750 (2006) JOSAB 25, A140 (2008)

MIIPS based techniques and their applications are protected by 8 issued and 25 patents pending.



Multiphoton Intrapulse Interference Phase Scan (M”PS)

GVD Measurements With £0.1 fs? Accuracy and Precision
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Coello et al., Applied Optics 46, 8394 (2007), Water and Sea Water
Devi, et al. AIP Advances 1, 032166 (2011), Common Solvents
Wrzesinski, et al. Opt. Express 19, 5163 (2011), Atmospheric and Combustion Gases



2. Progress in Quantum Control
a. Wave Packet Manipulation and Role of Homogeneous and Inhomogeneous Broadening

1-photon pump 2-photon probe
Inner vs. outer turning point probing to different states of I,
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2. Progress in Quantum Control
a. Control of ground and excited state coherence cancelling inhomogeneous broadening at room temp.

a) Homogeneous vibronic relaxation b) Inhomogeneous vibronic relaxation R, Ry a) Photon Echo Measurements: Electronic,
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2. Progress in Quantum Control

b. Interference Between Laser Pulses and Wave Packets
Scherer et al. JCP 93, 856 (1990), JCP 95, 1487 (1991)
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2. Progress in Quantum Control
b. Interference Between Laser Pulses and Wave Packets

Multiple independent comb shaping (MICS)
Avoiding linear interference by pulse shaping

~ Michelson MICS
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2. Progress in Quantum Control
c. Selective Two-Photon Excitation, CARS, SRS, Electronic and Vibrational Control

Single-pulse CARS with selective vibrational mode excitation: Dudovich Oron Silberberg Nature 418, 512 (2002)
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2. Progress in Quantum Control
c. Selective Two-Photon Excitation, CARS, SRS, Electronic and Vibrational Control

THE JOURNAL OF Selective two-photon Microscopy

PHYSICAL i
CI-IET\-'[IS'ﬁRY Optics Express 11, 1695 (2003)

Live fluorescently labeled
Drosphila embryos

Jennifer P. Ogilvie et al. W&

Optics Express 14, (2006) . T’“
J. Phys. Chem. 108, 53 2004
nm“r" ARTICLES | .
p Otonlcs PUBLISHED ONLINE: 16 JANUARY 2011 | DOI: 10.1038,/NPHOTON.2010.294 R

Highly specific label-free molecular imaging with
spectrally tailored excitation-stimulated Raman
scattering (STE-SRS) microscopy

Christian W. Freudiger'?, Wei Min?, Gary R. Holtom?, Bingwei Xu?, Marcos Dantus*
and X. Sunney Xie2*

Nature Photonics, 294 (2010)




2. Progress in Quantum Control
c. Selective Two-Photon Excitation, CARS, SRS, Electronic and Vibrational Control

Binary pulse shaping Testing SHG spectra Testing selective excitation
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Dela Cruz et al. PNAS 101, 16996 (2004)



2. Progress in Quantum Control
c. Selective Two-Photon Excitation, CARS, SRS, Electronic and Vibrational Control

Data obtained from a scattering surface ’:“ . @/

at 12m standoff distance, 10uJ/pulse, S |

~100um neat liquid film ~10mg/cm? L, 2

Harris, Wrzesinski, Xu, Lozovoy and o -

Dantus, Opt. Express, 16, 592 (2008) % ] W
600 800 10001200 600 800 1000 1200
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Optical Image

using Single-Beam Coherent Anti-Stokes Raman Scattering”,
App. Phys. Letters 99, 101109 (2011)



3. Challenges in Chemistry

a. Chemical Reactions

Strong Field

AB+C*

ABC*

SCIENTIFIC
AMERICAN

ABC
Shaped pulse
—>
time

Kosloff, Rice, Gaspard, Tersigni, and Tannor propose
achieving chemical selectivity by shaping of intense
femtosecond pulses, introduce an iteration procedure
for optimization of the pulse shapes (1989).

Judson and Rabitz propose using a learning algorithm to

s / i control molecules (1992)
: 976
AL Assion, Baumert, Bergt, Brixner, Kiefer, Seyfried, Strehle,

Gerber Control of chemical reactions by feedback-

LASER CHEMISTRY LASER CHEMISTRY optimized phase shaped laser pulses (1998)
J. Chem. Educ. 43, 566 (1966) SCI. AMER. 240, 114 (1979)



3. Challenges in Coherent Control
a. Chemical Reactions

Potential Energy (hartree)
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Quantum control of a
concerted chemical reaction

Dynamic Stark Control of Photochemical Process
Sussman et al. Science 314, 278 (2006)
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3. Challenges in Coherent Control
a. Chemical Reactions

iii. Bimolecular reactions From atoms to molecules ...
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3. Challenges in Coherent Control
a. Chemical Reactions
I. Amol is a very large quantity

il. Coherent vs.

Evolutionary
algorithm
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Is photofragmentation pattern phase dependent?

Comprehensive exploration on the role of phase coherence on
the fragmentation of large molecules by intense shaped pulses

2.42
b) a) | CyH,
0.4 4 C:H CzHy
2.35¢ 55
> 0.2
2.28 _‘%‘
24215 §on—o¢ﬂ >=a‘.@&¢___+¢
.=
w
= g2
044 = Binary phase
— #' = 42500, fs?
— ' = 2800, fs?
T — 71 . T T T T T T T T 1 T T 7 T
7 8 9 10 i
Time of flight, usec
4 b} C?.H3
C;H7
049 CsHg
> 0.2
g j
2
500 -O{H}* (-
£ )
w
=02+
0.4 Binary phase
4 w=+g
H=-=
22 T T T
-300 200 -100 Tlm%,fs 100 200 300 7 10 1"

(:7++7+

Zhu et al. J. Phys. Chem. A.

9
Time of flight, nsec

(:5+*5+ (:3+*3+

112, 3789 (2008)

AA50 mW vv 25 mW
oce 170 mW om 75 mW

4 a)_
- OOAV C7H -
20- ]
2 | _
-y
10- ]
_ omAYV CsH3 )
0 T . T
0 " 2000

2 4000

¢H f




3. Challenges in Coherent Control

SHO Inionsky 2.0

2

b. Coherent Control of Electrons, Electronic States and Electronic Transitions

1464

pt. Express 14, 9537 (2006)
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3. Challenges in Coherent Control
b. Coherent Control of Electrons, Electronic States and Electronic Transitions

Electronic Wave Packets using Y2-cycle pulses
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R. R. Jones, PRL 76, 3927 (1996)

P (10-2Ng) Pe(10-2N )

Remetter et al, Nature Phys. 2, 323 (2006)
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transm. photon number (arb. u.)
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Attosecond electronic wave packet interferometry
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3. Challenges in Coherent Control
c. Breaking strong chemical bonds while leaving weak ones intact
1004 (A) CTD MS/MS [M-T1|' L -H;PO,
7 G All L pric AjriLik
i ab..E i, i N I
- 1' z Ve -dLLPO,
g - xY ¥s ‘ b3 b b, Hoyd
(R (| I |||'-l"||-=l:!'.l!€=‘|""y"'|"' -“"
200 300 400 500 600 70 800 900 1900
2 L]

Kalcic et al. J. Am. Chem. Soc.131, 940 (2009)
Smith et al. J Am Soc Mass Spectrom, 21, 2031 (2010)

Conclusion: fs-LID is an important method for PTM analysis:

Other methods: Electron capture dissoc., Electron Transfer dissoc., and VUV dissoc.

Perspective: Post-translational modifications: a challenge for proteomics and bioinformatics,
Appel, Bairoch, Proteomics 6,1525-6 (2004)

Cellular tumor antigen p53: (Science Molecule of the year 1993), has more than 18 phosphorylation sites.

DNA winds around Histones, gene regulation and DNA repair depend on histone PTM’s.



3. Challenges in Coherent Control
c. Determining the role of coherent quantum processes in nature

a T=0
E
100 =
5 §
E 50
f‘ 838 828 818 808 798 788
? Arcsinh
- _
£
s
0
.
> 5
11-cis Rhodopsin  All-trans photoproduct “
Isomerization Coordiflate 838 BéB 818 BIDB 7‘96 788 81;8 858 B;E E(IIB 7‘98 78-8
Coherence wavelength (nmj Coherence wavelength (nm)
Coherence in Photosynthesis
Engel et al. Nature (2007)
“direct evidence for remarkably long-lived
5 electronic quantum coherence playing an
<1 . .
important part in energy transfer processes
within this system.” 18 20 22 24
0 1 eray iy - ° 3000 Coherently wired light-harvesting in
photosynthetic marine algae at ambient
Vibrational Coherence in Vision temperature

Wang et al. Science 266, 5184 (1994) Collini et al. Nautre (2010)




4. Future Outlook and Applications
a. Phase Control of Advanced Sources — towards TL single-cycle pulses

Octave spanning (single-cycle) laser pulses can access any frequency in the spectrum

Typical 100 fs laser, centered at 800 nm
Ultrafast laser producing 12 fs pulses; 2P (x8.3), 3P (x69)

Ultrafast laser producing 4 fs pulses; 2P (x25), 3P (x625)

O—a@ & 20 30
800 nm 400 nm 267 nm

2% 10 4x 1012 6x1012 TR
x x a) x x
Microwaves Micromachining 2P microscopy 3P microscopy
Terahertz Time-resolved 2P lithography 3P lithography
Stimulated Raman Field ionization 2P PDT -2
A A A
A A
JOSAB 25, A140 (2008)
—_— 4.3 fs pulse

In 1997 Murnane and Kapteyn reported generation up to the 297t harmonic! =>Coherent X-rays with A~2nm

Intensity (arb. unit)
° 3 o
2 £ a

A 3fs pulse doubles in pulse duration after propagating 12" in air.

20 -10 2 £

0
Time(fs)

Applications of single-cycle pulses require ultra-precise phase measurement and compression

MIIPS has the accuracy and precision to enable this research



4. Future Outlook and Applications
a. Phase Control of Advanced Sources
Femtosecond Free-Electron X-Ray Sources: Sub-10fs pulse duration

La TCAVD L1X
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Heater t"" LTS L2-linac L3-linac
il GH - ot N e e e e
[J.It‘l- i : T -
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135 Me' : o TCAVE L2

Table top x-ray sources:
Compact Coherent X-Ray Sources <10nm wavelength

Table top attosecond laser sources:
Sub-80as (sub-30as) isolated attosecond pulses in the x-ray regime

Ultrafast laser sources:
From single cycle pulses to self-compressing <5fs sources
It is all a matter of phase control.

CLEO/LASER FOCUS WORLD

INNOVATION AWARD

Autocorrelation signal o
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Single-cycle pulse from Er-doped fiber technology, Krauss et al. (2010)



4. Future Outlook and Applications
a. Phase Control of Advanced Sources — new concepts

Fiber laser oscillators capable of sub-40fs 20nJ/pulse output.

1120

1o, Soliton

Wavelength (nm)

Pasition {m)

Sub-30fs Ytterbium oscillator

i 16 um

SHG (arb. units)
$8 88

Intensity (a.u.)

Voltage (mV)

Dantus and Wise groups: Opt. Express

|
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19, 12074 (2011)
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SOLUTIONS INC

Filamentation phenomena

A. Braun et al., Optics Lett. 20, 73 (1995)



4. Future Outlook and Applications

a. Phase Control of Advanced Sources — pulse shaping attosecond pulses

a iw%—m
a Laser field :
¥ s
o o
- £ £,
Coulomb potential 3 é
m w=ppld g 5!
o o
(“')v | g o
— 5] o
3 :
4 10 A 1.0 A
=z z :
i - \
£le P=pgrr3 05 : 05
= :
: 200 L 200
2 2
z | ; 1.0 B 1.0F B
gV VY S 1 ]
g : e L E E
= '
d Pyl 05 05
b ’ - 2 g
: E 0.0 E 0.0
y z"-' 1.0 c z° 10F c
e ‘unlocked 05 08
Electron :
wavefunction 0.0 i L 00 L + .
25 30 35 40 25 30 35 40 45 50
I : | : o || w Energy (eV) Energy (eV)
90 100 110 120 130

Phaton energy (eV)

| CEP phase effect on HHG
X-ray field Ba|tUSka et al Nature (2003)

S0 A

CEP phase effect on HHG
Calegari et al. PRA (2011)

b Phase-matching cut-offs € Phase-matched HHG spectra
0.6 - =i
E 10: P 2, =13pm B}
c *x 7 Regionll w5 E“
1% Seips =
5 2 QPM 23 O Water 3
Tunnel ionization T 8 8 : window 5
o =
Laser field S i
a o
—~ 2
> = s
Quantum ionization ) 2 5
By 1| = a
> m - Ei s
80 % 3| e 2
§ X 3 H =
s % 5 5 S
\_47 = & O5IWater o = 5 15
— 5 window - - Bo b1 as
£ - . Eu £
o = 0 2 o
b 88
[ 8 ! 2 30
- '_- Region | as
2 01 Perfect phase
£ 3- matching 80
£ < as
& 0.05 T = 1
08 1 2 3 4 5 6 7 8 910 o T & ]
Time (cycles) Laser wavelength 4, (um) Normalized HHG intensity

McPherson et al HHG JOSAB (1987); Classical model Corkum PRL (1993),
Popmintchev et al. Nature Photonics Review (2010); Chen et al. PRL (2010)



4. Future Outlook and Applications
b. Quantum control-based molecular sensing and diagnostics

Single-Shot Gas Phase
Thermometry via Multi-Pulse
Time-to- Frequency Mapping
of Coherence Dephasing

Yue et al., J. Anal. Chem. (2012)

Selective Single Beam CARS

Images of turbulence in a jet of CO, in air
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4. Future Outlook and Applications
c. Material Synthesis and Material Processing

Single shot ablation of silicon
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4. Future Outlook and Applications
d. Connecting the macro-micro-and-nano worlds

Spatiotemporal Coherent Control of Lattice Measurement and Control of Ultrashort Optical
5 ps Vibrational Waves Pulse Propagation in Metal Nanoparticle-

20 ps Covered Dielectric Surfaces

35 ps

Feurer, Vaughan, Nelson,

Excitation Science 299, 374 (2003)

Al
Spallt:-l L B
le:':ﬁ:ea ._h
shaper LA L
Sample
Probe
(b) .
kspp,1% 58':' Mkspp,z
o '._-.?'f \\ _
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Surface-mediated four-wave mixing of
nanostructures with counterpropagating surface ]
plasmon polaritons s s pom st

Liu, Wang, Potma, Opt Lett 36 2348 (2011) Gunn, Ewald, Dantus, Nano Letters 6, 2804 (2006).
Gunn, High, Lozovoy, Dantus J Phys Chem C 114 12375 (2010)



4. Future Outlook and Applications

e. Coherent control and communications and information processing

Encoding and decoding of femtosecond pulses

Weiner Heritage Salehi, Opt Lett 13 300 (1988)

with sub-6 fs laser system at 2.12GHz

Asynchronous encrypted information transmission
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From Fundamental Concepts to Applications

4D Molecular Structure Energy Transfer

. ot Selective Photochemistry
Micromachining
Ultrafast Spectroscopy
New materials Molecular Sensing

Chemical Vapor Deposition Reaction Dynamics

Communication Coherence Relaxation
Cryptography Bimolecular Reactions
Semiconductor Lasers
Ch T £
Quantum Computing @ . Salsnas
é@ Microscopy
Protein sequencing
Wavepacket Sculpting uantum doty *QQ. Vision
oy AR & O \; Photosynthesis
6.1, 6\0\0g Protein Folding
Plasma 6\/@ . Epigenetics
ancer
Bose Einstein condensates = - Laser Surgery

Photodynamic therapy

b

Coherent Control Photoassociation

Adiabatic Passage Laser Cooling

ey N

Optimal Control
Strong Fields
Pulse Shaping

ultiphoton Excitation
Mode Suppression

Chirped Excitation
Four-Wave Mixing
Mode Selective Excitation

Liouville Path Interference
Pump-Dump
Wavepacket Interferometry

Transition-State Spectroscopy

Dantus, Annual Review Phys. Chem. 2001
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Phase control enables fundamental research and applications

MICHIGAN STATE
UNIVERSITY

: = The Dantus Research Group -~
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Backup Slides for Follow Up Discussion
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Multiphoton Intrapulse Interference Phase Scan (M”PS)

Theory
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S @

(b)
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Experiment
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Optics Express 16, 592 (2008)
JOSA B 25, A140 (2008)
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What is Multiphoton Intrapulse Interference?

A

50‘51 Typical

n-r* dyes

4 No states here

1.55 eV

Implications for simple SHG (TL)
2=0.0=0

A=800 nm A=790 nm
02=0 02=0

+ — 4,_||. A=400 nm

=0 | =800 nm A=810 nm
=0

Implications for simple SHG (shaped)
2=0.0=n

A=800 nm A=790 nm
02=0 (O=1

+ — O_I.- A=400 nm

=0 | =800 nm A=810 nm
=0

A 4 A 4




Selective nonlinear excitation is useful!

27| .
| Fluorescein
= T © Reported *
S —o— This method ] |
2 \ 1-photon absorption 780 800 80 840
€ 1-
8
c
3
170}
L
o
2
o
D I ¥ I ¥ I ! | ¥ L ¥ I v I ¥ 1 |:|
650 700 750 800 850 900 950 1000 400 410
Wavelength (nm) A2 e 1.5, 224 ne !

* Albota, M.A., C. Xu, and W.W. Webb. Applied Optics 37,7352 (1998)
4.6 fs laser Bingwei Xu, Yves Coello Optics Express 14, 10939 (2006)

Coello, Xu, and Dantus, Appl. Optics In press (2010)
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Pulse shaping for:

Greater signal
Reduced photodamage
Selective excitation

Photoenhancement!

J.Phys.Chem.A 106, (2002)
Optics Express 11, 1695 (2003)

J. Phys. Chem. 108, 53 2004 Opt. Commun. 241, 1841 (2008)
PNAS, 101, 16996 (2004) 43
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2010 Pulse Shaping Workshop
August 20-22, 2010

2011 Pulse Shaping Workshop @ MSU Aug 19-21. Keynote by Andrew Weiner |




High Sensitivity and Selectivity
SUPER-CARS Imaging
CHy Isomer Discrimination

0N O, NC,

PS— 1200 cm™ DNT - 1350 cm? 2,6 DNT — 1090 cm™

CHy 2,ADNT+ PS ~3.5um PS films, 20% DNT in two films
NOg 1 meter standoff

Next step: making it practical

M. Bremer, P. Wrzesinski, N. Butcher, V. Lozovoy and M. Dantus, App. Phys. Letters 99, 101109

Y°N11\



Regarding the Reported Selective Synthesis of Toluene from

Acetophenone
Original Figure: 1.0- ;/O CHs
: From Science
1.0- C/O CHj; - CeHsCH3
= 0.5-
- From Science _ CSI_/IS\ CG/I_JSCO
- CSH5CH3 -
- 6"15 [TA AT TT“.\(*I[ [
1A A
- 'A C NE(E:)CHLCO
N ¥ H ‘ Acefones
. B R | o i :
Mass spec. obtained for ~100 fs TL pulses / irgﬁlecular
i 1 1 H > cetopnenone from Uantus ‘:
Dashed lines and red peak indicate contaminants ”": fl P t. | L
0 20 40 80 80 100 \“120
[1] Levis et al., Science 293, 709 (2001). oYk Tolene ()

[2] R. J. Levis and H. A. Rabitz, J. Phys. Chem. A, 106, 6427 (2002)
Comment to J. Phys. Chem. A 113, 5264 (2009)



Regarding Toluene from Acetophenone
Reported in 2004

Original Figure from Graham et al.:

Acetophenone miz=105 ———
4 Levis, Spec. Acta.
Fig. 1 m/z = 92

TL 60 fs pulses \
i m/z=77

N

[1] Levis et al., Science 293, 709 (2001).

[2] R. J. Levis and H. A. Rabitz, J. Phys. Chem. A, 106, 6427 (2002)

[3] Graham, Menkir and R. J. Levis, Spectrochemica Acta B 58, 1097 (2004)
Comment to J. Phys. Chem. A 113, 5264 (2009)

Acetophenone miz=105 ——0

Levis, Spec. Acta.

Fig. 1 mz=92

TL 60 fs pulses
miz=77

Conclusion:
No toluene
observed in
Levis’ data it
was
misassigned

i Acetophenone
1 TL 80 fs pulses
_ Dantus Lab
. CORRECT
ASSIGNMENT 77 105
0 pus 4 ps 8 us 12 us
>
Time of Flight



Project from DHS Phase | (cleared)

Determine sensitivity and selectivity in a complex
background at standoff distances and evaluate
imaging capability.

Photo

PS
Looking at the fingerprint region! ~

Complex background

\

Samples: Polymer solution with trace amount of DNT
spin-coated on substrate.

DNT

PMMA




Intensity

Intensity

SUPER-CARS Sensitivity at 1 meter standoff
1s exposure, <4mW average laser power (Raw Data)

10% DNT in PS

< 5um films
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SUPER-CARS Selectivity for standoff imaging
<4mW average laser power

& FemisPulse Master - Yersion 1.0beta [Copyright Biophotonic Salutions. Inc.]
verson
tput feld | Purametors | Load fram lez) |

———1000cm™ excitation
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Used by Bartels, et al for CARS
Phys. Rev. Lett. 88, (2002) in multi-beam geometry. GA selective vib. excitation by Bucksbaum.



Spectral imaging by stimulated Raman scattering

Christian Freudiger, Sunney Xie, Nature Photonics (submitted 2010)

Collaboration with Bingwei Xu, and Marcos Dantus

A B &

3, 1.0 —— Cholesterol 1.0 S 1.0 —— Cholesterol

c —— Oleic acid 3 & —— Oleic acid

g 0.8 —— Ethanol ; 0.8 é 0.5 —— Ethanol

& 0.6 3 06- 5

@ 5 S 0.0

3 0.4+ £ 04- o

§ 0.2 2 0.2- § 051

g 3 - 5

=3 0-0_| T T T T 1 OO_I 2 T T T T ] E -1.0- T T T T

@ 2800 2850 2900 2950 3000 3050 2800 2850 2900 2950 3000 3050 2850 2900 2950 3000
Raman shift [cm'1] Raman shift [cm'1] Raman shift [cm'1]

52



Milestones in Quantum Control

* Young’s double-slit experiment (1803), although it is just linear interference

" oc cos (4,

P oc ‘ewﬁ1 +e'

« Zewall proposes femtosecond lasers will be able to beat IVR (1980)

« Tannor Kosloff and Rice propose selectivity via control of wave packet evolution (1985-6)

Re Optimization: This result has analogs in electrical engineering and information theory, where it is part of matched filter theory.

Variational optimization of the shape, duration, and separation of the pulses used to generate the selectivity of reactivity, and analysis of
the changes induced by Inclusion of all degrees of freedom of the molecule (say in the sense of a reaction path Hamiltonian).

* Brumer and Shapiro propose one vs. three-photon quantum control (1986)
) . 2
P o ‘e'@ +e'3¢1‘ oc cos (¢, —3¢,)

» Dantus, Rosker and Zewail Femtosecond Transitions State Spectroscopy (1987)

» Kosloff, Rice, Gaspard, Tersigni, and Tannor propose achieving chemical selectivity by
shaping of intense femtosecond pulses, and introduce an iteration procedure for
optimization of the pulse shapes (1989).

 Bergmann et al. Adiabatic population transfer driven by delayed pulses proposed (1989)



Milestones in Quantum Control

Chelkowski, Bandrauk Corkum propose and Boers, van Linden van der Heuvell and
Noordam demonstrate efficient population transfer in a three-level ladder system by using
chirped pulses ChiRAP (1990)

Judson and Rabitz propose using a learning algorithm to control molecules (1992)
Bergmann et al. STIRAP experimentally demonstrated (1993)

Cerullo, Bardeen, Wang and Shank chirped pulse excitation of molecules in solution (1996)
Gordon Experimental demonstration of one vs. three-photon control (1997)

Weinacht, Ahn and Bucksbaum “read-write” on sculpted Rydberg wave packet (1998)
Pastirk, Brown, Zhang and Dantus chirp control of a chemical reaction (1998)

Silberberg demonstrates multi-chromatic two photon control (1998)
: : 2
P (20)) o |1+ e|¢(a)—A)+l¢(a)+A)

GA assisted pulse compression (1997)

Assion, Baumert, Bergt, Brixner, Kiefer, Seyfried, Strehle, Gerber Control of chemical
reactions by feedback-optimized phase shaped laser pulses (1998)
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Sample of random 16-bit binary phases
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Is molecular response predictable?
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Effect of phase & amplitude shaping
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Generalizing to other molecules

a) p-Nitrotoluene
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b) Acetophenone
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Back to MS
fragmentation in
strong fields

A
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Either no e-coherence

or very short lived.
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Searching for coherence

Coherence found on acetophenone
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Zhu, X., Lozovoy, V. V., Shah, J. D. & Dantus, M. "Photodissociation Dynamics of Acetophenone and Its
Derivatives with Intense Nonresonant Femtosecond Pulses.” J. Phys. Chem. A 115, 1305-1312 (2011).



Part lll. 6. The need for pulse compression

MIl Theory — sereeeeseeees Experimental data
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Pulse Compression

The goal is to take a broad-bandwidth pulse with highly nonlinear
dispersion (quadratic, cubic, etc...) and to compensate the phase
distortions to recover a TL pulse.

Pulse after single bounce from dielectric coated mirror
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D. Pestov, V. V. Lozovoy, and M. Dantus “Single-beam shaper-based pulse characterization and
compression using MIIPS sonogram”, Opt. Letters 35, 1422-1424 (2010)



GA. Pulse Compression

Works but it is slow and not very accurate because search space near TL is flat
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About evolutionary learning algorithms

The search space = (PxA)N For:
N = # of pixels N =100
P =100

P = # of phases

A = # Amplitudes A=10

Search space = 1039
10290 for phase only

Limited application in the field!

» Size of parameter space vs. sampling (108 per day, 1012 perite)

» Low repeatability and portability of results
*The search space: Is it convex or needle in the haystack?
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Conclusion:




