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Motivation & Outline

Motivation: Want to control molecular dynamics and
develop control based spectroscopy

1. Controlling Molecular Dissociation
Closed loop control
Phase dependent dissociation

2. Controlling Molecular Ionization
Electronic hole wave packets
Pulse shape dependent ionization

3. Control for Discrimination
Combine control & stimulated
emission for ‘perfect’ discrimination
Quantum Control Spectroscopy



Molecular Fragmentation &
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Ultrafast Optical Pulse Shaping

Programmab/e mask which shapes E(o) =
Gmf? %

|E(w)]ei®

Lens

In




Closed Loop Molecular Control Results
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Optimal Control Pulses
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Pump-Probe Measurements: CH,I,
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Strong Field Ionization (Pump)
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fraction of laser cycle - 'quasi static’ with neutral - launch wave packet



Resonant Dissociation (probe)

» Small molecules with many
electrons can have 1-2 eV
resonances in molecular ion

- Low excitation energy -
'moving hole around'’ in
the ion

T Photon

/\_ Wavepacket
——3Wpt. motion

Energy (eV)

- Wave packet moves (and
spreads)

» Can be transferred to
dissociative excited state by
probe pulse
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J. Chem. Phys. 127, 131101 (2007)



Interpreting The Dynamics CH,I,

2D Bending, Stretching
Potential Enerqgy Surface
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Wave Packet Dynamics
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Comparing Experiment with
Calculated Dynamics
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Potential Energy Curves for CH,IBr*
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Does Dissociation Depend on Phase
or Amplitude?
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Intensity Dependence

Calculation Experiment
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‘Molecule is transparent for left going wave packet in large fields!
Accounting for intensity volume averaging leads to excellent
agreement between experiment and theory



Picturing the Dynamics

Bend Angle X-C-I

Physical Review A 79 043407 (2009)



Understanding the Dynamics:
'‘Dressed States'

Diagonalize:
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Dissociation depends on:
*Strong laser field 'dressing’ the potentials
-Spatially varying phase of the wave function



Revisiting Molecular Ionization (CH,I,)
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Comparing Weak and Strong Field
Ionization

‘Multiphoton’
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Normalized lon Yield [arb.]

Strong vs Weak Field Ionization

CH,l,* Pump Probe Scan Beating, multiple frequencies
- : : = wave packets on different

potentials
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Multiple Electronic States Controlled by
Chirp
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Different Frequencies Correspond to
Different Ionic States Excited by Pump
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Control over Ionization Viewed with
Velocity Map Imaging
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Strong Fields - Dynamic Resonance

Na energy levels Stark shift: 6E « g(t)’
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Strong Fields - Dynamic Resonance
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Fitness (arb. units)

Spontaneous vs Stimulated
Emission - Na
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Understanding Single Atom
Strong Field Dynamics

Measured Optimal Pulses
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Understanding Single Atom
Strong Field Dynamics
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Understanding Single Atom
Strong Field Dynamics
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Stimulated Emission very sensitive
to excited state population

Experiment Theory
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- Stimulated emission is ‘superfluorescence’ — locking of
atomic dipoles

» Modest single atom gains lead to large stimulated gains



Control based Discrimination

Photoselective adaptive femtosecond
quantum control in the liquid phase
T. Brixner, N. H. Damrauer, P. Niklaus & G. Gerber

Physikalisches Institut, Universitat Wiirzburg, Am Hubland, 97074 Wiirzburg,
Germany

Coherent light sources can be used to manipulate the outcome of
light—matter interactions by exploiting interference phenomena
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Consider the Same Experiment, but now
with Stimulated Emission...

Pulse Shaper

Lens

Combine closed loop
learning control
with stimulated
emission
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..To Achieve 'Perfect’
Discrimination
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Control based Discrimination
for measuring Enzyme Binding
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Other Implementations of Quantum
Control/Pulse Shape Spec’rr'oscopy

From Pulse Shaper  Detection
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Conclusions & Future Work

» Shaped laser pulses can

be used to control
dissociation and ionization

- Control + stimulated
emission can lead to
‘perfect’ control

* Quantum Control
Spectroscopy has many
applications
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