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Unveiling the nonadiabatic rotational excitation process in a symmetric-top
molecule induced by two intense laser pulses

Daeyul Baek,? Hirokazu Hasegawa,® and Yasuhiro Ohshima®
Institute for Molecular Science, National Institutes of Natural Sciences, Mvodaiji, Okazaki 444-8385, Japan
and SOKENDAI, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
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Nanosecond photofragment imaging of adiabatic molecular alignment

S. Trippel, M. Stei,@ C. Eichhorn, R. Otto, P. Hlavenka, M. Weidemiiller,?) and

R. Wester®:©)
Physikalisches Institut, Universitdit Freiburg, Hermann-Herder-Straffe 3, 79104 Freiburg, Germany

(Received 12 November 2010; accepted 1 February 2011 published online 11 March 2011)
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Measuring polarizability anisotropies of rare gas diatomic molecules

by laser-induced molecular alignment technique
Shinichirou Minemoto?® and Hirofumi Sakai®
Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan

(Received 10 March 2011; accepted 6 May 2011; published online 6 June 2011)
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Coherent rotational excitation by intense nonresonant laser fields
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Alignment-dependent ionization of hydrogen molecules in intense laser fields

Ying-Jun Jin,"" Xiao-Min Tong,"* and Nobuyuki Toshima'
'Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba,1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan
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(Received 12 April 2011; published 14 June 2011)
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But molecules are more interesting than that:
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Outline

*Coherent nonadiabatic alignment. A brief review
of the qualitative physics

0 ; : N’O/
*Toward complex systems: Q ¢©{‘
- Beating the transition to unstable
dynamics 18 —
O A

- Alignment in solutions

- Torsional control (" )ec> R T
o

- Guided molecular assembly
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Alignment by short, moderately intense, laser pulses

At near electronic resonance frequencies:

J,+5
Jo+3

Jo-l Jo-3 345

etc...

Jot4
! Jg+2
0 JO-Z Jo' 4

T.S., J.Chem.Phys. 103, 7887 (1995)



What terminates the rotational excitation?

Either J.., ~ T Qg/7:

A AN

Or Qg ~ AJmay):

[ AQ) ~BJ(J+1) ]



At IR frequencies (m<<m,.), rotational excitation
takes place via two-photon (|AJ| = 2) cycles:

| I \H J(




At very low frequencies (o ~ 2J,B./h), rotational
excitation takes place via sequential pure rotational
transitions:




® ~ 2J,B,/h




T>>Tqt
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DC limit
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Static (adiabatic)  I(t)
alignment, T > T,
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Friedrich & Herschbach, 74, (1995)
Kim & Felker, 104, (1996)
Larsen et al, 109, (1998)



T>>Tqt

N

— 0/

DC limit

T <«<Tyot




Nonadiabatic alignment: Alignment takes place after the
pulse peak, & subsequently exhibits a coherent revival pattern

(t)
T <«<Typt 1

Alignment

T 2o 11t
13! < - 11!

T.S., Phys.Rev.Lett. 83, 4971 (1999)



The first experimental realization

VOLUME 87, NUMBER 15 PHYSICAL REVIEW LETTERS 8 OCTOBER 2001

Experimental Observation of Revival Structures in Picosecond
Laser-Induced Alignment of 1,

F. Rosca-Pruna and M.J.J. Vrakking*

FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 1 May 2001; published 20 September 2001)
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Recent experiments on nonadiabatic alignment in isolated
diatomics
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DC limit

T <Tyot

Ton >> Trot Toff <Trot
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DC limit

T <Tyot

Ton >> Trot Toff <Trot




More generally, optimal control theories v Y
build in that phase relation among the light L= et
waves that will translate into a desired phase 2=t

relation among the matter waves: "“)

¢]
detector )@ 5—%:_ ___-

See talk by Hersch Rabitz

Field
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A. Pelzer, S. Ramakrishna & T.S., J.Chem.Phys., 126, 034503 (2007).
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Short-time Fourier transforms ¢
are particularly telling:
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Alignment (as discussed so far)
IS a one-dimensional concept:

v free
¢ free




The elliptically polarized field populates a coherent wavepacket of J,

VI and K states, and establishes a probability density that is

correspondingly well defined in the 3 Euler angles
2
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Phys.Rev.Lett. 85, (2000)



On the optimal approach to
(field-free) 3D alignment

Phys.Rev.Lett. 94, 143002 (2005): Two pulses with the second fired at
the revival of the first

Phys.Rev.Lett. 97, 173001 (2006): Two pulses with the second
Immediately following the first

Phys.Rev.Lett. 99, 143602 (2007): A long and a short overlapping pulses
Phys.Rev.A 77, 043412 (2008): One elliptically polarized pulse

Optimal control theory shows that the long+short route very generally
wins (but a single elliptically polarized pulse is nearly equivalent):
M. Artamonov & T.S., Phys.Rev.A 82, 023413 (2010)



Spectrum Classical motio Quantum revivals

E;=B.J(J+1) 6=0, ¢=Jl . nh/B .

hnear
0=0, ¢=1JI,

EJK:Ce‘](‘]+1)+(Ae'Ce) K?
¥ =1J cos@[ll—ll)

2, =(ActCe)J(J+1)
+(Ae'Ce) EJ’E(K)

Ak

' Wv%

symmetric top

<C0Ss20>

symmetric top,
time




Experiment:
(H. Stapelfeldt
& coworkers)

15t C-revival 15t J-revival

(ps)

Calculation:

<C0s20>

E. Peronne, M.D. Poulsen,
H. Stapelfeldt & T.S., Phys. Rev

0 | 500 1000

Lett. 91, 043003 (2003).

(ps)



Toward taming the rotations of asymmetric
tops with strong fields




A first, long pulse tightly aligns the most
polarizable axis to the polarization vector:

0.95

0.80

0.65

0.50




A second, short, orthogonally polarized pulse
spins the molecule about the arrested axis:

t=1ps t=3ps t=8ps t=10ps
3 . . L]

side view

|+
end view

F+
side view

F+
end view

S. S. Viftrup,
H. Stapelfeldt, E. Hamllton&TS Phys. Rev. Lett., 99, 143602 (2007)
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Computed revivals of the
azimuthal angle alignment &
corresponding helicity excitation
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S. S. Viftrup, V. Kumarappan, 0 I S —
H. Stapelfeldt, E. Hamilton & T.S. Phys. Rev. Lett., 99, 143602 (2007)



Rotational coherences as a probe of
the dissipative properties of media:
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S. Ramakrishna & T.S.
Phys.Rev.Lett. 95, 113001 (2005)
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A first experimental realization

I Ranan Spectrose 3008 30: 694690

T B ) JRS
Field-free molecular alignment of CO; mixtures in
presence of collisional relaxation

T. Vieillard, F. Chaussard,* D. Sugny, B. Lavorel and O. Faucher
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Torsional alignment
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S. Ramakrishna & T.S., Phys. Rev. Lett. 99, 103001 (2007)



THE JOURNAL OF CHEMICAL PHYSICS 130, 234310 (2009)

A combined experimental and theoretical study on realizing
and using laser controlled torsion of molecules

C. B. Madsen,' L. B. Madsen,"™ S. S. Viftrup,” M. P. Johansson,” T. B. Poulsen,’

L. H-::rIn"nan;;w:zu.«zur{i,2 V. I"{l..lm@ur.'aq‘.:q::-.?m,2 K. A, .J+.z'|ir-;;ham-*.f:n,2 and H. Stat|::-»\5:II‘»\E:I«:ItQ'E"J
lD{’pﬂ'.l"fmfﬂf of Physics and Astronomy, Lundbeck Foundation Theoretical Center for Quantum System
Research, Aarhus University, SO0 Aarfuis C, Denmark

*Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark

3 Department of Chemistry and Interdisciplinary Nanoscience Center (iNANGQ), Aarfus University,
SO00 Aarhus C, Denmark

0.5
0.4+
0.31

| /

0.14
.........

-180 90 0 Q0 180 1.0 2.0 3.0 4.0
dracepe (degrees) tp (ps)

F*signal (arb. units)



About the controllability of torsional
coherences subject to dissipative media

0.75

Bianthrylacetylene

B ~_ |




4 Monika Leibscher

12 AlA)] 121

Probability densities of the
two BF, groups after the
pulse: The two Isomers are
torsionally-aligned along
perpendicular directions

J. Chem. Phys. 136, 084309 (2012)



Torsional control of chirality

Shane Parker

< Pure enantiomer

t (ps) h

Optimized pulse

e

_Z 0
P 2 -7 < Thermal racemic

Special Issue of Mol. Phys., in press mixture



Toward a Spin Switch



Other potential opportunities that could be envisioned
(but are yet to be explored)

* Perhaps control of energy transfer
* Probably control of charge transport

* Hopefully control of chemical reactions



Toward laser-guided molecular assembly

A route to molecular constructs with
long-range orientational order

Alignment has a major role in applications of molecular assembly:

Molecular electronics: alignment determines the electric &
magnetic properties

Crystalography: alignment circumvents “2D powder formation”
Material research: preferred mechanical & optical properties

Biology: structural determination of molecules that cannot be
crystalized

but in self-assembly alignment is very difficult to control



E.g., laser-guided molecular assembly of
poly-y-benzyl-L-glutamate on a water surface

Under field-free The laser establishes
conditions the molecules mm-range order that
are randomly oriented lasts indefinitely

=i

-

0= COCHE—Q

l. Nevo, S. Kapishnikov, A. Birman, M. Dong, F. Besenbacher, H. S., T.S., &
L. Leiserowitz, J.Chem.Phys. 140, 144704 ; Science highlight “Molecular

Choreography in Next Generation Nanofilms”, D. Powel.




Communications

. ’ DOI: 10.1002/anie.200905927
Peptide Films /

Laser-Induced Alignment of Self-Assembled Films of an Oligopeptide
f Sheet on the Water Surface**

Atalia Birman, Kristian Kjaer, Yehiam Prior, Iftach Nevo,* and Leslie Leiserowitz*
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Purely laser-induced assembly (due to induced dipole-
Induced dipole interactions) is very general, and potentially
offers control over the structure of the assembly*

Elliptical =
polari«ifely

Linear
polarization

*Disclaimer: these are very preliminary results



Classical simulations of collective alignment in a molecular ensemble

0.9

0.6

Field-free (Lennard-
Jones) potential
(x10-2 eV)
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200
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order of the assembly with respect to one another

B

Max Artamonov

Elliptical =
polari£iilely

Linear
polarization

*Disclaimer: these are very preliminary results



Transport through molecular-scale junctions:

. o -
jogagveeeTas

Coherently controlling the electron dynamics
(in the lab) has long been a challenge....




First, laser beams are macroscopic (diffraction limited
to approximately the wavelength)

Second, photon-driven processes on metallic surfaces
are dominated by substrate-mediated excitation in the

vast majority of cases
%Iaser pulse
9 .
Cartoon courtesy OO
of Martin Wolf 10203050101



Plasmonics as a route to combining spatial with temporal
resolution: Sharp metal tips (like nanoparticles and
corrugated metal surfaces) enhance and spatially localize an
Incident electromagnetic field via plasmon resonance effects

O The Lycurgus cup: 4th

century A. D. Single molecule

spectroscopies

| e # The Cathedral of
iIEEH Cologne: 1300 A.D.
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Energy transport in
the nanoscale
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Computed intensity
enhancement by a
gold tip




Semiconductors offer an advantage if one can make use
of sub-bandgap photons

E hv < bandgap




Toward control of |
junctions with light Computed Intensity
enhancement by a

M. Reuter, M. Sukharev & gold tip

T.S., Phys.Rev.Lett, 101,
208303; highlight in &
Nature Photonics 3, 4-5.

Matt Reuter




Toward control of
junctions with light

M. Reuter, M. Sukharev &
T.S., Phys.Rev.Lett, 101,
208303; highlight in
Nature Photonics 3, 4-5.

Computed intensity
enhancement by a
gold tip



An Ultrafast,
Nanoscale Switch

orientation

;
£ Numerical results for an
3,}. ligo-diacetylene, attached to a

S1(100) surface, translate into a
conductance on-off ratio of just
above 2 orders of magnitude
and on-off time-scale of 0.6 ps




Focusing and Alignment in Plasmon-Enhanced Fields

The interaction of light with molecules in the vicinity of T L.
metal nanoparticles is common to a wide range of * e —-]-
experiments in nanoplasmonics. Focusing and alignment PP
will play an important role in many of these experiments. 3

2~
3
£
4
0
Rotationally averaged Evolution of the center-of- y
potential energy surfaces  mass trajectories toward Molecular alignment for
subject to which the the high intensity regions different particle shapes

center-of-mass evolves

M. Artamonov and T. S., NanoLett., 10 4908 (2011)



Epilogue

Our goal has been to extend alignment from a
tool in physics and optics to make a tool In
chemistry and material science.

Specifically, we talked about: ﬁ

- Asymmetric top molecules

\N <©>
- Alignment in solutions / . —

- Torsional control

- Coherent control of transport via junctions e

- Alignment and focusing in the nanoscale LQ%
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