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Trends

Computation and theory traditionally used to validate
models/theories with broad compass and little materials
specificity

Increasing use of computation to design particular
experimental outcomes, or make extensive surveys of phase

space — “materials by design”, “materials genome”,
Nanoscale experimental probes

Complexity, multi-functionality, multi-scale

Big data and convergence of experiment and simulation
Science drivers: energy is different from IT




Trend 1: Materials by design
Materials Genome Initiative

The Materials Genome Initiative is a new,
multi-stakeholder effort to develop an
infrastructure to accelerate advanced
materials discovery and deployment in the
United States. Over the last several decades
there has been significant Federal
investment in new experimental processes
and techniques for designing advanced
materials. This new focused initiative will
better leverage existing Federal investments
through the use of computational
capabilities, data management, and an
integrated approach to materials science
and engineering.

http://www.whitehouse.gov/mgi
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Materials by design: genomics?
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Genomics must be grounded
in theory: the human genome
initiative depends
fundamentally on the “central
dogma” of DNA coding. This is
both the fundamental theory
of biology and an algorithm

Materials genomics derives its
validity from the Schrodinger
equation — but this is not (yet)
an instruction set
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Many materials genomes .... Needs emerging from
workshops

= Predictive models of fabrication, growth, etching, anodisation,
deposition, ....

= Multiscale integration and design
= Simultaneous modeling/experiment
= Rapid materials surveys



Trend 2: multiscale modelling

Prediction of new materials and structures on the
atomic scale, including interfaces, growth and defects

Excited state calculations for electron
transfer and photon-mediated transitions

Accurate intermolecular potentials to model
structure and dynamics on nanoscale

60 nm

Semi-classical models of electrical and
particle transport on mesoscale

Effective theories of inhomogeneous media:
elastic, fluid and electrical transport

= Each box requires new investment in methods, theory and computation
= Joining up the boxes is as important as the investment in any single piece
= \We must curate both data and software

= Design choices driven by application target

Demands a collective corporate effort linking computation, methods,

software, and data guided by an engineering goal
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Multiple scales of materials modelling
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Trend 3: Big data
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Some current applications



Growth of Li,0, nanoparticles

Geometries are determined
using simulated annealing
with classical potentials.

(Li202)50

(Li;05)134

The resulting geometries are input into
GPAW, a highly parallelizable code on
the BG/P at Argonne, to obtain more
accurate energetics.

(Li}05) 123

(L i2 02) 58



Self-Improving Anode for Lithium-lon Batteries Based on Amorphous
to Cubic Phase Transition in TiO, Nanotubes

cbx.doiorg/10.1021/p2 10793u | 1. Phys. Chem. C 2012 116, 3181-3187
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Si nanowires as anodes in Li-ion battery: Yi Cui
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Predictive Simulation of lonic Liquid
Properties

* Computational framework for automatic and rapid
predlctlon of liquid phase properties

electrostatic potential partial charges, force
and structure field parameters
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What can be computed?
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Goal: Ab initio polymer rheology predictions via DSM

MD simulation

Determination of
Sttic Parameters

e T R

Non-linear rheology predictions,

hekDa star-branched melt
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Goal: Engineering rheology of PDMS Gels swollen
with entangled PDMS solvent

@ Polydisperse components. Modeling

@ Each component simulated

@ Unknown fraction of dangling with self-consistent mean field

strands.
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Coordination Number (Dense Fluid)
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Lithographically directed self assembly of block
copolymers - de Pablo

hv
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Interferometric  patterned Imaging  Deposit Block Self-assembled
Lithography Layer Copolymer Film Domains

“Standard” MC simulation: entanglement means time scales are very long ....
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A Combinatorial Approach - Experiment

More than 400 combinations of parameters were considered, yielding five types of
morphology:
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Multiplication of feature density (or interpolation)
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Better superconductors - design of vortex pinning
for large current applications

2 2
Far = %/ddw {,6 (% + le2) + % (N— i—ZAMQ + %(v X AH)?}

9V §FqL FaL

Time-dependent Ginzburg -Landau eqn. 9~ 30 0 SA 0

Equations well understood: but contain long range forces, disjoint length

scales, and need long times
BES-SCIDAC — A Glatz, MSD
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Typical simulation complexity

Computational demand for 103 flops per DoF per timestep

Computational Challenge: Complexity

Simulations of O(10°) timesteps for reliable V values
Sample volumes O(10%») + meshes with cell size O(10-1»)
= O(10°) degrees of freedom (DoF) per realization of

pinning configuration |

10 - 100h on full 100TFlop/s machine at peak for single
Sampling J & W increases demand by O(100)-O(1000) x

- Computational requirements

Leadership-class hardware for computational optimization of pinning structures
State-of-the-art sampling techniques to minimize the number of probed L
Automated meshing of materials with embedded pinning structures

Fully implicit time-integration to circumvent the timestep size limitation

Modern iterative methods to solve O(1B) system at each timestep in optimal time.

Rérg



Computational Challenge: Meshing

* mesh size needs to be smaller than the coherence
length to capture to dynamics correctly

* nearinclusions and defects mesh needs to be finer
- Adaptive meshing

* increased precision by adaptive mesh refinement near
vortices

o o



Extension of the TDGL formalism

® Modeling of thermomagnetic avalanches

nonlinear magnetic flux diffusion equation coupled to thermal diffusion in 2D

® Coupling to elastic strain

superconducting
islands

inclusion of elastic interaction (intrinsic or external) leads to spatial variations of T,

® Magnetic inclusions for enhanced pinning

magnetic inclusions have long-range interaction
- could strongly suppress thermal creep

R&rg



Large scale simulations of granular flows

33
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Coupled mesoscale problems
= Long-range strain fields — microstructural evolution in heterogeneous systems

— Interfaces, surfaces — surface strain )
Free charge density p(r)

— Patterned systems Surface charge density o(r)

T T O o o

[ i \‘\s in field
= Interactions with other order parameters s aliain i

— Ferroelectric polarization

— Magnetization density
— Free charges

() L db)
\ )‘ h
,
|
200 nm :,f.é 1 200 nm af.
Ferroelectric domains in BiFeO; patterned Stress in a core-shell nanoparticle

structures (S. Hong et al.)

= Goal: scalable computational methods for microstructural evolution of strongly-
coupled mesoscale problems

35



Nonlinear dynamics of quantum condensates
Tosi et al Nature Physics 2012

pump 1l pump 2

DENSITY

Grosso et al 2011

37
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Status

= |ndividual tools being driven to a high level in specific
application areas

= |ntegration across scales still a problem
— Particularly for concurrent methods
— Parameter passing still the rule

= “Data-driven” methods growing

— Model discovery in its infancy but promising
— Trees not genomes
— Concurrent simulation/experiment a goal

= Changing computer architectures

— Progress driven by algorithm development on earlier generation machines
— New machines need to solve new problems

38




What would we like to be able to do

= Accuracy: complex multi-atomic structures with energy scales

= Excitations: multiply excited electronic states in complex
solids, fluids, and interfaces

= Embedding: solving each piece of the problem at the
appropriate level of accuracy

= Sampling: fast smart searches in configuration space

39



Accuracy

Only quantum chemical methods have the required accuracy to
model thermal effects, water, etc. (and then only in the
ground state)

These will never work on large systems
Can we invent “principled” force field methods

Assume that you can do arbitrarily accurate QM calculations but
very infrequently and “fit” them to force fields

Two major issues: basis functions; fitting procedure
Turn the computational problem into a “big data” problem

41



Force correlation with QM
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H20 dimer interaction energy: MP2 AVTZ

BLYP error

4D 1 1 1
. 2-body MP2 AVTZ (BLYP+GAP) error
a0k - - » + 2-body BLYP error || 3 : . , ! , , ,
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: : ; : : = 2-body BLYP error

3.5 4.0 4.5 5.0 5.5 6.0

o [A]
ROO ROO

~99.8% of the interaction energy: 0.006

- om0 : : .
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Excitations

Density functional theory applies only to the ground state

Energy gaps in semiconductors typically wrong by factor of 2 or

more

No decent treatment of correlation effects: magnetism, Mott

physics, excitons, superconductivity, ferroelectricity, ....

Even quantum chemical methods are usually unrewarding: ... but

Initiator- Full Configuration Interaction Quantum Monte Carlo
(i -FClIQMC)

Cluster-Dynamical Mean Field Theory
Effective Hamiltonians - reduced basis state methods
Density Matrix Embedding

44



Cluster-dynamical mean field theory on VO,
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Sampling

LDFT calculations on large systems are now free
Variational QMC calculations will soon be so
Interesting directions in MC-Cl

Large-scale structure searches are now routine
Timescale problem for slow dynamics and rare events

... this is generating a lot of data ....

47




Ensemble Molecular Simulations

Challenge: Single molecular dynamics (MD) trajectories cannot
capture long timescales, especially rare events and thermodynamics.

Replica 4 T ﬁ ﬁ
Replica 3 s Temperature — —
MD exchange
Replica 2 sl - 4 Temperature e
MD >< exchange
Replica 1 T Rejected i) EE—
Methods: Implementation goals:

* Replicate Exchange (RE) = New methods, applications should

« Umbrella Sampling (US) be easy for the scientist
e Hybrids (REUS), etc. = Exploit peta/exascale machines



Ensemble Molecular Simulations

= UC-ANL SCI (Hammond/Dinner)
developed nonequilibrium umbrella
sampling (NEUS), which is
communication-intensive, for BG/P,
Cray using Global Arrays [1].

\

A & & &
8 1 15 5

= Recognized the need for more general
molecular dynamics capability and
friendly environment for domain
scientists to develop new algorithms.

J o)V

= New LAMMPS-Ensembles software
that implements RE, US, Plumed [2]
using LAMMPS library interface (black
box, if so desired). Will scale to all of

BG/Q.

[1] J. Chem. Theory Comp. 7, 2710 (2011)
[2] http://www.plumed-code.org/




Structure searches

Polymeric Oxygen at High Pressures

Sun et al., PRL 108, 045503 (2012)

Ba-1V and Rb-IV host-guest structures

Pickard and Needs, J. Phys.: Condens. Matter 23
(2011) 053201
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“Big data”

= Volume: e.g. sky surveys, computational structure
= Velocity: e.g. 4D detectors in X-ray, neutron scattering
= Variety: biology, materials science, chemistry,

51
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Temperature (K)

- ‘ Total Data: S(Q, T, x)
h 2.0 2
2 -1 (l) 1 2 0 “ 1 s " i
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5
Materials science example: Diffuse scattering

“Most of materials science is bottlenecked by disordered structures”

Simulation Experiment

350

Bi-Stri
300 Paramagnetic ekl oy

insulator CE

by 0
T
3 )
E
& 100
50

insulatar rmatal

ed-AF &
etal

AAFM AAFM |

1 L 1 1
035 040 045 050 055 061 065

Material Simulated Simulated e Experimental Sample
composition structure scattering scattering

Use experiments to constrain models of material structure, and vice versa
— Experiments: Single crystal diffuse scattering of, e.g., bilayer manganites, yielding
pair distribution functions
— Simulations: Molecular dynamics for candidate structures, yielding simulated
scattering and simulated pair distribution functions
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Automated workflows for data reduction

Visualization: parallel scripting for large data volumes

Real time data analysis and visualization tools

Petascale active data storage

Real time data simulations

Model optimization and (automated) parameter extraction
Data cataloguing and retrieval

56




Soft Electronic Matter



\
TaSe, : Chen 1984

Modulated electronic phases

= Charge and spin density waves have been known for
many decades — in “strongly correlated” systems
they are the rule not an exception

= Added: nematics, multiferroics,

100 nm
—

Charge-order in LaCaMnO,
Loudon & Midgley 2005

FeAs: Chuang et al Science 2010

S Mori et al 1998
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Energy dense materials are strongly correlated

Li-ion battery, commercialised by Sony in 1991
Li, C¢ (anode) / Li,, CoO, (cathode)
X limited to ~ 0.5
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This is not an accident!




Doping of a Mott insulator

Free energy
A

Insulator Metal
A
U/t
Insulator
)
Metal
S S
1/2 <n> Density

Expect phase separation and an inhomogeneous state
“Frustrated” by Coulomb interaction
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Inhomogeneous phases in Mott systems

Mobile donors diffuse to form metallic puddles and screen
Coulomb repulsion of phase-separating carriers

This is a generic feature of any system with a first-order phase
transitions separating stable phases of differing electron density

Particularly prevalent when dopant species are highly mobile —e.g. O
vacancies and Li ions

61



VOLUME 92, NUMBER 24

PHYSICAL REVIEW

LETTERS

week endin
18 JUNE 2004

Charge Ordering, Commensurability, and Metallicity
in the Phase Diagram of the Layered Na, CoQO,

Maw Lin Foo,] Yayu “."M’;’:u*ng,2 Satoshi Watauchi,"*'= H.W. Z:mdbergen,3’4 Tao Hf:,5 R. I Ca't.!a,]'3 and N.P. Dngz‘3
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Patterning of sodium ions and the control of electrons
in SOdium CObaItate Vol 445 |8 February 2007|doi:10.1038/nature05531

M. Roger’, D.J. P. Morris?, D. A. Tennant>, M. J. Gutmann®, J. P. Goff?, J.-U. Hoffmann?, R. Feyerherm?, E. Dudzik®,
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PHYSICAL REVIEW B 80, 165114 (2009)

Electronic phase diagram of the layered cobalt oxide system Li,CoO, (0.0=x=1.0)

T. Motohashi.'? T. Ono.>? Y. Sugimoto,' Y. Masubuchi.! S. Kikkawa.! R. Kanno,® M. Karppinen,”* and H. Yamauchi’~+#

Derivative of open cell voltage dV/dx indicates biphasic regions
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Mitigation

= Explicit multiphase mixture with rigid backbone stuctures
= “Jamming” and size-control
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Metal-Insulator transitions in perovskite 3d oxides

distorted

A schematic metal-insulator diagram for the filling-control (FC) and bandwidth-

control (BC) 3d transition-metal oxides with perovskite structure. From
Fujimori, 1992.
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Colossal magnetoresistance in manganites
controlled by size of A-site cation
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How do you make a polaron liquid?

= |n a cubic system, a local J-T distortion propagates to infinity
... can this be screened?

= With rotations of octahedra inhomogeneous patterns are
allowed
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Colossal magnetoresistance in manganites
controlled by size of A-site cation
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Jamming Transition in Granular Systems

T.S. I\fIa_imudar,1 M. Sperl.l S. I_,ur;iing,2 and R. P. Bfahringer1
PRL 98, 058001 (2007)

(a)

(d) |8

3D reconstruction of ~10M
PNIPAM colloids (Nagel

group)
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Outlook

Are there systematic ways to make structurally (and
electronically) “soft” phases in oxides, for example

" negative thermal expansion materials

= fragile glasses

= polaronic liguids, nematics, smectics, ...

= electrocaloric materials

= |ow coercivity ferroelectrics

= phase change materials

= strong quantum fluctuations near critical points and high T_
conventional superconductors
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