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Fusion	Performance	Has	Increased	SubstanCally	UnCl	1997	
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•  Exis%ng	experiments	have	achieved	
Gain	=	QDT	~	0.6	

•  JET	and	TFTR	have	produced	DT	
fusion	powers	>10MW	for	~1s	

•  ITER	is	designed	to	a	scale	which	
should	yield	QDT	≥	10	at	a	fusion	
power	of	400	–	500	MW	for	300	–	
500	s	
•  Progress	has	been	determined	by:	

•  Scien%fic	advances	
•  Larger	more	powerful	facili%es	

•  Need	the	next	generaCon	of	
faciliCes	to	make	progress	to	
burning	plasmas	
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ITER	Will	Enable	the	Understanding		
of	Burning	Plasmas	

•  Understanding	of:	
•  Sustaining	hot	burning	plasma	by	alpha-

par%cles	
•  Confinement	of	reactor-scale	plasma	
•  Stability	from	micro	to	macro	in	burning	

plasmas	
•  Plasma	wall	interac%ons	at	high	heat	flux	
•  High	gain	dynamics	
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•  Nonlinear	interac%on	of	turbulence,	wall-interac%on,	external	sources,	fusion	reac%vity,	
macroscopic	instabili%es.	

•  Strong	coupling	between	the	plasma	and	“external”	systems	especially	plasma-wall	
interac%ons	
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ITER	is	Developing	Reactor	Relevant	Technology	That	
Relies	on	Large	IntegraCon	Effort	

•  First	wall	materials	
•  Superconduc%ng	magnets	
•  Remote	handling	
•  Tests	of	breeding	blankets	
	(at	modest	neutron	fluence)	

	
• 	Progress	in	burning	plasma	research	and	fusion	development	relies	

on	integra%on	of	cubng	edge	physics	and	technology.	
• 	ITER	provides	a	unique	opportunity	to	study	burning	plasmas	
• 	Integra(on	issues	are	complex	and	will	never	be	captured	in	the	

published	literature	

Superconduc%ng	model	
Central	Solenoid	Coil	
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InternaConal	Community	Is	ShiZing	Focus	to	
	AZer	ITER	

•  ITER,	while	a	very	important	step	in	developing	fusion,	is	not	
the	final	step	toward	a	power	plant	

•  Important	scien%fic	and	technological	ques%ons	remain		
•  In	addi%on,	cost	issues	for	both	future	burning	plasma	experiments	

and	the	produc%on	of	electricity	have	to	be	addressed	

•  Major	design	and	R&D	studies	are	underway	in	most	of	the	
ITER	partners	for	the	steps	beyond	ITER	
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Outstanding	ScienCfic	and	Technical	Challenges	
Beyond	ITER	

ScienCfic	Challenges	
•  	Improve	plasma	confinement		
	
•  Improve	shaping,	control	

•  Simplifying,	reducing	size	

•  Increase	plasma	stability	and	
sustainability	

•  	The	plasma-material	interface:	
•  effect	of	plasma	on	materials	
•  effect	of	materials	on	plasma	

	

Technical	Challenges	
•  	Harnessing	fusion	power		

•  durable	materials	in	fusion	
neutron	flux,		

•  power	extrac%on	

•  Tri%um	Breeding	Ra%o	>1	

•  Increase	magne%c	field	and	current	
density	

•  Improve	economic	performance	



European	Fusion	Roadmap:		
Put	Electricity	on	the	Grid	Mid-Century	

•  Vision	of	a	demonstra%on	
plant	is	defined	largely	by	
ITER	
•  Ini%ally	pulsed	opera%on	
•  Substan%al	technological	

R&D	program		

•  Construc%on	schedule	is	set	
by	ITER	results	

7	 A.Donné	presented	in	Beijing,	Nov.	2017,	to	be	issued	in	the	spring	2018	



China	is	Embarking	on	a	More	Aggressive	Path	
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•  China’s	Ministry	(MOST)	is	funding	the	next	step	of	China	Fusion	
Engineering	Test	Reactor	(CFETR)		

•  Relies	heavily	on	ITER	technology	but	goes	beyond	ITER	
•  Exploring	higher	field	and	possibly	high	temperature	superconductors	
•  Steady	state	opera%on	(200	MWe	to	500MWe)		
•  Tri%um	breeding	

•  Timeline	is	not	%ed	directly	into	ITER’s	
•  PPPL	par%cipates	in	both	CFETR	and	South	Korean	DEMO	studies	
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CFETR	Design	Takes	Advantage	of	Work	Done	on	ITER	
and	Strong	R&D	Program	to	Address	Specific	Issues	

•  EAST	results	and	ITER	
procurement	arrangements	
support	both	ITER	and	CFETR	

•  CFETR	R&D	includes	work	on:	
•  Vacuum	vessel	
•  High	Tc	(?)	central	solenoid	
•  Advanced	divertor	
•  Breeding	blanket		
•  Tri%um	system	

•  Goal	is	demonstrate	TBR>1	
and	produce	electricity	



Different Perspectives Exist on the Future Direction of 
Tokamak Research  

•  US	research	has	pioneered	the	
opera%onal	boundaries	
•  Op%ons	under	discussion	include	

pulsed/steady	state,	high	βT/	high	
βp (q95)	

•  Differences	in	perspec%ve	reflect	
integra%on	assump%ons:	
•  Current	drive	efficiency	
•  Magnitude	of	field	
•  Power	flux	assump%ons 		

•  US	studies	have	emphasized	cost	
(high	performance)	and	steady-
state	
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What	are	the	US’		roles	in	burning	plasma	research	
and	fusion	energy	development?	

•  The	road	to	fusion	energy	is	a	long	one	with	other	countries	stepping	
forward	to	take	the	lead	
•  Unless	there	is	a	radical	redirec%on	in	US	funding,	work	on	burning	plasma	and	

fusion	energy	development	will	have	to	done	interna%onally	

•  To	make	an	impact,	US	needs	to	be	driving	innova%on	based	on	strong	
scien%fic	understanding	
•  Iden%fy	key	scien%fic	and	technical	solu%ons	to	the	challenges	for	ITER	and	

beyond	to:	
•  Establish	the	scien%fic	and	technical	viability	and		
•  Reduce	the	cost	for	fusion	development	and	fusion	energy	

•  PPPL	aims	to	extend	this	understanding	to	burning	plasmas	
and	use	it	for	innovaCon	
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On-going	examples	how	PPPL	Contributes	to		
Understanding	and	InnovaCon	

•  NSTX-U:	high-β compact	configura%on	
	
•  Develop	predic%ve	understanding	of	burning	plasma	
	
•  Robust	power	and	par%cle	exhaust	solu%on	
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NSTX-U	Pursues	TransformaCve	Ideas		
to	Accelerate	Fusion	Development		
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Advanced diagnostics + computation 
provide fundamental understanding and 

basis for next-step ST devices 

			
ST-based fusion neutron source 

Provide steady-state fusion neutron 
environment for nuclear material and 

component R&D 

NSTX Explored ST stability and confinement 

Extend ST confinement understanding to 
fusion-relevant temperatures 

High-power NSTX-U  
tests of liquid metals as 

transformative wall solution  

Demonstrate 
sustainment 

for future 
steady-state 

operation 

NSTX Upgrade Facility and Research Program 

ST =  
Spherical 
Torus.  
A magnetic 
confinement 
configuration 
that can lead to 
a smaller and 
more cost-
competitive 
fusion energy 
reactor. 

Fundamental Plasma and Materials Science 

ST Pilot Plant for net electricity 
Liquid metal blankets for high thermal 

efficiency and high–temperature 
superconducting coils 
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Exascale	Project	Offers	Path	to	High	Fidelity		
Whole	Device	Model	

•  First	step	is	to	integrate	core	with	edge	
•  Design	of	new	facili%es	and	planning	on	burning	plasma	experiments	will	require	

whole	device	models	
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	Develop	Robust	Power	and	ParCcle	Exhaust	SoluCon	
CompaCble	with	High	Performance	

	Liquid	metal	boundary	is	a	poten%al	
solu%on	to	two	challenges:	
•  Self-healing	and	may	be	a	robust	first	

wall	of	a	burning	plasma	
•  Increased	plasma	confinement		

and	pressure	
Current	ac%vi%es:	
•  PPPL’s	LTX-β		
•  EAST	(China)		
•  Long	term	plan	for	full	liquid	boundary	

in	NSTX-U	
•  Vapor	metal	concepts	 PPPL	LTX-β	
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3D	MagneCc	Shaping	for	Minimal	RecirculaCng	Power	
and	Enhanced	Stability	

•  Offer	methods	to	transform	the	approach	to	
fusion	energy		
•  Elimina%on	of	large-scale	instabili%es	and	

termina%on	events	
•  Increased	plasma	sustainment	efficiency	
•  Improved	pressure	limits	
•  Reduced	turbulence	

•  Wendelstein	7-X	(W7-X)	goal	is	sustained	5%	beta	
and	validate	stellarator	op%miza%on	
•  Already	demonstrated	Te	=	10keV	

•  Op%miza%on	of	stellarator	performance	has	a	
great	deal	of	poten%al	

	

W	7-X	



Even	Small	3-D	MagneCc	Fields	Have	Big	Effects!	
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•  Control	of	plasma	
stability	using	small	
3-D	magne%c	fields	
at	edge	

•  Quan%ta%ve	
valida%on	of	
theore%cal	model	
for	edge	instabili%es	

•  Disrup%on	
threshold	also	
validated	
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Locking 
threshold 
exceeded 

Non-resonant 3D 
perturbations 

Suppressio
n threshold 

met 

IPEC Prediction of stability 
Space 

Experimental Validation of 
Model 

access to 
“hidden 
window” 

Prediction of No Locking Window of ELM Suppression 
Validated in Experiment !  

Suppression	
threshold	
	met	

Are	there	magne%c	configura%ons	with	small	3-D	fields	that	can	
improve	the	performance	of	tokamaks	and	decrease	the	cost	of	the	
stellarator	coils?	
	



Strategic	Approach	to	Burning	Plasma	Research	
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•  US	decided	in	1996	to	pursue	burning	plasma	interna%onally	
•  US	has	an	advantageous	opportunity	to	par%cipate	in	ITER	to	address	key	

issues	
•  Involvement	in	ITER	needs	to	include	universi%es,	industry	and	na%onal	labs		
•  For	US	to	be	effec%vely	involved	in	ITER,	need	a	strong	domes%c	program	

•  If	US	were	to	withdraw	from	ITER,	US	program	needs	to	increase	focus	
on	innova%ons	
•  Withdrawal	from	ITER	will	undermine	interna%onal	collabora%on	
•  A	decision	for	the	US	to	do	everything	in	fusion	R&D	suppor%ng	DT	burning	

plasmas	would	require	a	major	financial	commitment 		
•  Need	to	determine	if	innova%ons	can	substan%ally	reduce	the	costs	and	

overcome	the	impact	of	going	it	alone	to	study	burning	plasmas	in	the	US	
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Breakthrough	InnovaCons	and	Detailed	
Understanding	PosiCons	US	Strategically	

•  If	US	par%cipates	in	ITER:	
•  Enables	us	to	exploit	ITER	effec%vely	and	transfer	the	knowledge	to	US	
•  Breakthrough	innova%ons	posi%on	the	US	industry	to	follow	up	on	

ITER’s	success	in	the	next	step	of	fusion	energy	development	
•  If	US	does	not	par%cipate	in	ITER:	

•  Breakthrough	innova%ons	may	open	a	pathway	to	a	burning	plasma	
that	is	consistent	with	constrained	budgets.	Examples	include:	
•  Prac%cal	high	temperature	superconduc%ng	magnets	
•  High	confinement	at	high	β	&	low	collisionality	in	NSTX-U	

•  Sustained	β=5%	in	W7X	without	disrup%ons	
•  Enhanced	sustained	pedestal	confinement	
•  Liquid-PFC/divertor	enabling	higher	heat-flux	systems	
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US	Fusion	Strategy	Needs	to	be	Robust	

•  Needs	to	make	major	breakout	contribu%ons	at	all	budget	
levels	

	
•  The	US	community	needs	to	make	the	case	that	we	can	

successfully	address	the	scien%fic	and	technical	challenges	to	
deliver	on	an	energy	program	

	
•  Need	to	posi%on	ourselves	to	take	advantage	of	a	

commitment	to	develop	fusion	energy	
•  Na%onally	or	interna%onally	


