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Thank you for the invitation to speak about: 

• The state and potential of magnetic 

confinement-based fusion research in the 

United States and the options and strategies 

that may shorten the path to fusion energy… 

• …for example, through design and 

construction of fusion energy facility to 

demonstrate electrical self-sufficiency 
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Outline 

• Overview 

• Tokamak Pilot Plants 

• Stellarator Pilot Plants 

• Summary 
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Electricity gain Qeng determined primarily by  
engineering efficiencies and fusion gain Q (=QDT) 
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Parameter Assumptions: 
• Mn = 1.1, Ppump = 0.03×Pth 
• Psub + Pcontrol = 0.04×Pth 
• aux = 0.3  
• CD = ICDR0ne/PCD  0.3×1020A/W/m2 

For more details see J. Menard, et al., Nucl. Fusion 51 (2011) 103014 
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Burning plasma demonstration remains essential 

Critical knowledge to be gained: 

• Non-linear dynamics from turbulence, 

majority self-heating by -particles 

• Confinement, stability at low r*, n* 

• High power exhaust handling, both 

steady-state and transient (ELMs) 

• Disruption prediction, avoidance, and 

mitigation at reactor scale 

• Nuclear facility: licensing, operation, 

diagnostics, plasma control, remote 

handling, T processing 

ITER:  Q = 10 
Pfusion = 400-500MW 

tpulse = 300-500s 

R = 6.2 m, a = 2.0 m 

BT = 5.3 T,   IP = 15 MA 
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ITER basis extrapolates to large, pulsed DEMO 

• R = 8-10m 

• tburn =1-3 hrs 

• Advantage: 

– Use nearly/existing 
physics, technology 

• Challenges: 

– Thermal, EM stress 

– Energy storage 

– Cost and schedule 
for construction 
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Some stellarator reactor designs also large R 

• FFHR-2ml (Japan), LHD-like 

– R=14m, a=1.73m, B=6.2T, Pfusion=1.9GW 
 

• HSR (Germany), W7X-like 

– R=20m, a=1.6m, B=5T, Pfusion~3GW 
 

• ARIES-CS (US), NCSX-like 

– R=7.75m, a=1.7m, B=5.7T, Pfusion=2.44 

 
Note: These are Pelec~1GWe  higher than largest-R tokamaks on previous slide  

7 



~70% of U.S. electricity from ≤ 500MWe sources 
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~70% of U.S. electricity from ≤ 500MWe sources 
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From: Observations on Fusion Power Market Attractiveness 
Ryan Umstattd - Deputy Director for Commercialization (Acting) 
Presented at US Fusion Community Workshop 
December 11, 2017 – Austin, TX 

Characteristics of U.S. 

electricity market: 
 

• Lower power: 1-500 MWe 

• Modular / load-following 

• Low (enough) capital cost 

 

 Challenging for fusion 



Possible high-level fusion development strategy 

 Focus research and resources on key science and 

technology drivers that could lead to more compact 

and/or efficient fusion systems 

1. If above R&D successful, develop small net electric 

demonstration (or equivalent) facility (Pilot Plant) 

2. AND need substantial fusion nuclear materials  and 

component R&D (Fusion Nuclear Science Facility) 
 

• May be possible to combine 1. and 2. into FNSF/Pilot 



Performance parameters for strategy 

1. Integrate high-performance, steady-state, exhaust  

 QDT = 1-20,  100% non-inductive (tokamaks), Pheat/S ~ 0.5-1MW/m2 

2. Fusion-relevant neutron wall loading 

 Gn ~ 1-3MW/m2,  fluence: ≥ 6MW-yr/m2 

3. Tritium self-sufficiency 

 Tritium breeding ratio TBR ≥ 1 

4. Electrical self-sufficiency  

 Qeng = Pelectric / Pconsumed ≥ 1 

Possible to achieve in single device with phased program? 

FNSF emphasis 

Pilot emphasis 



What are key drivers for compact fusion? 

 

 

Consider tokamaks first…. 



Fusion gain QDT  H25 from low  high gain 

Fix current, field, density, geometry, auxiliary power, P = 0.7: 

QDT  ≤1  QDT  Q*DT  H2      QDT >>1  QDT  Q*DT
2.5  H5 
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Gain vs. physics and engineering constraints 

• In steady-state, current-driven kink limit weaker constraint than high 

fBS  no q* dependence  relevant variables are bN / fBS and fgw: 

Exponent 98y2 Petty-08

Cb 2.68 2.14

CB 2.98 2.74

Cgw 0.82 0.64

CP -0.38 0.06

CR 1.98 2.04

C 5.92 5.04

C 1.54 1.61

• Choose electrostatic gyro-Bohm Petty-08 

with no b degradation (JET, DIII-D, NSTX)  

Gain depends on (at least) 8 global parameters 

C. Petty, et al., Phys. Plasmas 15 (2008) 080501 
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Key parameters for achieving high gain 

Normalized 

Gain 

Major 
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External 

Current Drive 
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field in 
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Inverse 

aspect 
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beta 

Optimize: confinement, current drive vs density          aspect ratio 

15 



Potential Innovations for Compact Pilot  

Tokamak 
• Magnets – HTS for higher BT and Jwinding-pack 

• Confinement – Optimize edge transport barrier 

• Stability – Disruption avoidance, bN > no-wall limit 

• Aspect Ratio – Reduced A  higher bN and  

• Heating & Current Drive – New RF, Negative NBI 

• Divertors – Advanced / long-leg, liquid metals 

• Blankets – Liquid metal, high efficiency 

 



High-current-density rare earth barium copper oxide (REBCO) 
superconductors motivate consideration of lower-A pilot plants 

Base cable: 50 tapes YBCO  Tapes with 38 mm substrate 
(Van Der Laan, HTS4Fusion, 2015) 

Conductor on Round Core Cables 

(CORC): High winding pack current 

density at high magnetic field  

JWP ~ 70MA/m2 at 19T  
Higher current densities, B likely possible… 
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19T 

R = 3m 

TBR ~ 1 

PNBI = 50MW 

100% non-inductive 

bN (A) at no-wall limit 

A ~ 2 attractive at high JWP 
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A ≤ 2 maximizes TF magnet utilization 

0.3m 
0.4m 
0.5m 
0.6m 
0.7m 

Eff. shield 

thickness: 
JWP = 70MA/m2 
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A ≥ 3 maximizes blanket utilization 

0.3m 
0.4m 
0.5m 
0.6m 
0.7m 

Eff. shield 

thickness: 

JWP = 70MA/m2 
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All R=3m pilots require enhanced confinement 
i.e. H > 1 vs. conventional aspect ratio confinement scalings 

H98y2 = 1.5-1.8 HPetty-08 = 1.25-1.4 

 

Effective inboard WC n-shield thickness = 60cm 

JWP 

[MA/m2] 
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Example: A=2, R0 = 3m HTS-TF FNSF/Pilot Plant 

BT = 4T, IP = 12.5MA 

 = 2.5, d = 0.55 

bN = 4.2, bT = 9%, fgw = 0.8  
 

H98 = 1.75, HPetty-08 = 1.3 

HST = 0.7-0.9 
 

fNI = 100%, fBS = 0.76 
 

Startup IP (OH)~2MA 

JWP = 70MA/m2 

BT-max = 17.5T 

No joints in TF 

Vertical maintenance 

Pfusion = 520 MW 

PNBI = 50 MW 

ENBI=0.5MeV 

QDT = 10.4 

Qeng = 1.35 

Pnet = 73 MW 

Wn = 1.3 MW/m2 

Peak n-flux = 2.4 MW/m2 

Peak n-fluence: 7MWy/m2 

TBR  1 Cryostat volume ~ 1/3 of ITER 

21 
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J. Menard, et al., Nucl. Fusion 56 (2016) 106023 

ST confinement 
scaling uncertain, 

but potentially 
favorable 

ST non-inductive 
sustainment at 

high performance 
remains to be 
demonstrated 

Understanding ST confinement, sustainment = drivers for NSTX-U – See Gerhardt talk 
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Advanced / long-leg divertors, and/or fast-flow 
liquid metal likely required to enable compact Pilots 

Long-leg / Super-X divertor 

9 MW/m2 21 MW/m2 

Shorter leg LM divertor 

Geometry also compatible with  
“vapor box” concepts (Ono / Goldston) 
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Benefits of shorter-leg liquid metal divertor: 
• No top PF coil or separate cryo-stat  simplified maintenance 

1 

2 

3 

4 5 

6 

7 

8 

• Significantly reduce outboard PF coil current, force, structure 
• If liquid lithium, wall pumping could help increase H-factor 
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Power handling, mass control/removal, pumping drivers for LM – See Jaworski talk 



Liquid metal / molten salt blankets offer potential for  
high thermal efficiency, modular design 

Dual-coolant Lead-Lithium (DCLL) blankets, 

20 vertical sectors:  th = 30-45% (55% SiC/SiC) 

HTS ST-FNSF/Pilot ARC (MIT) 
Jointed 

TF 

FLiBe liquid immersion blanket, single 

component/removable:  th = 40-50% 

FLiBe: 

600-900ºC 

PbLi 

450-750ºC 

SiC / PbLi 

1000ºC L. El-Guebaly, et al., Energies, 9 (2016) 632 
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Outline 

• Overview 

• Tokamak Pilot Plants 

• Stellarator Pilot Plants 

• Summary 
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Stellarator strengths, challenges for FNSF/Pilot 

• No current drive required / intrinsically steady-state 

– Lower recirculating power, smaller wall penetrations 

• MHD-stable without active feedback control 

– Reduced diagnostic and actuator needs 

– No coils inside blanket/shield, internal stabilizing shells, 
disruption mitigation systems, or runaway electron risk 

– Thinner first wall, improved T breeding 

• Challenges: 

– Thermal / fast particle confinement, complex coils / blanket / 
maintenance, 3D power / particle exhaust, compactness 
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2010-11:  Size of compact stellarator (CS) pilot driven by 
magnet technology and neutron wall loading, but not Qeng 
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 Qeng=1.1 accessible at HISS04 ≥ 1.1 (~L-mode) 
 = Pilot design point 

b=6% 
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New stellarator optimization initiated at PPPL 

• Study intended to map out the configuration and physics 

program for a future stellarator project 

 

• Current topics include (a subset): 
– Generate a database of starting point equilibria by varying aspect ratio, 

elongation, bootstrap fraction and beta.  

– Include coil force constraints (COILOPT++ code modified) 

– Neoclassical transport, bootstrap (SFINCS), REGCOIL coupled to STELLOPT 

– Extend turbulent transport optimization from Quasi-Axisymmetric (QA) to Quasi-

Helically (QH) symmetric configurations  

– Develop metrics that will be used in an eventual divertor optimization algorithm 
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Recent design efforts:  Reactor (not Pilot Plant) designs 
modified to improve physics/engineering self-consistency 

• Increase A = 4.5  6, R=7.75m to 9.4m, 

straighten outer legs for vertical maintenance  

ARIES-CS 4.5 AR, 

 7.75-m Raxis 

ARIES-CS 6.0 AR,  

9.4-m Raxis 

High AR device meets targeted 

ARIES-CS plasma boundary 

Fixed 

Boundary 

Free 

Boundary 

MC with straight back legs 
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Result: simplified tokamak like vertical maintenance 

• Future: Need to revisit 

design and performance 

implications for CS 

FNSF / Pilot Plant 

31 



Potential Innovations for Compact Pilot  

Stellarator 
• Magnets – HTS for higher BT,  Jwinding-pack beneficial? 

• Confinement – Optimize 3D core, edge, fast-ion 

• Stability – intrinsically avoid runaways, EM loads 

• Aspect Ratio –  maintenance vs. mass-power density 

• Heating & Current Drive – New RF, Negative NBI 

• Divertors – Further design needed, liquid metals 

• Blankets – Liquid metal, high efficiency 
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Outline 

• Overview 

• Tokamak Pilot Plants 

• Stellarator Pilot Plants 

• Summary 
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U.S. is leader in scoping studies for range of 
possible compact FNSF/Pilot Plants 

A = 1.7 

R = 1-2.2m 
A ~ 2 

R = 3m 
A=4, R=4.8m 

(FESS FNSF) 

A = 3 

R = 3.3m 

ST Low-A Standard-A 

Tokamak 

Quasi-symmetric 

(QS) Stellarator 

A=3-4, R=4m 

A ≥ 4.5, R ≥ 3.5m 
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U.S. could / should lead in establishing physics 
& technology basis for compact FNSFs/Pilots 

• Integrated experimental demonstrations plus validated 
predictive capability to confidently proceed to FNSF/Pilot: 

– Adequate / elevated confinement - thermal and fast particle 

– High efficiency CD for tokamaks, steady-state operation (1046s)  

– Divertor + first-wall solutions for high power (P/S~1MW/m2), high 
Twall (350-550C possibly higher), mass removal for erosion/dust 

– ELM & disruption avoidance/mitigation (leverage ITER R&D) 

• HTS magnets for higher field, current density, temperature 

• Radiation-resistant materials, high-efficiency blankets 
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Summary 

• Extrapolations of present physics and technology basis 
appears to lead to large fusion devices which may not be 
well matched to U.S. electricity market 
 

• For more attractive fusion end-products, innovations are 
needed, and several appear very promising 
 

• U.S. research to advance compact AT/ST/stellarator 
combined FNSF + Pilot Plants could form complementary 
and highly impactful contribution to world fusion program 
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Backup 

 



Comparison of low-A FNSF / Pilot Plants 

TF coil 

type

R 
[m]

A Qeng QDT TBR

Surf-avg 

n-fluence 

[MWy/m
2
]

Ph / S 

[MW/m
2
]

H98 HPetty HST x bN
bT 

[%]
fBS

IP 

[MA]

BT 

[T]

Pfus 

[MW]

1 1.7 0.1 1.0 ≤ 0.9 6 1.6 1.25 1.25 0.70 2.75 5 20 0.82 7.3 3.0 60

1.7 1.7 0.15 2.0 1.0 ≥ 6 0.9 1.25 1.1 0.72 2.75 4 16 0.76 11 3.0 160

1.8 2 1 7.3 0 0.04 0.5 2.3 2.1 0.64 2.30 4 7.1 0.84 7.4 5 160

3 2 1.3 10 1.0 4 - 6 0.5 1.8 1.3 0.69 2.50 4 8.7 0.76 13 4.0 510

Copper

REBCO


