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Abstract 
 
 

This paper presents and discusses the problem solving methodology used in 
operations research. The advantages presented using this methodology include (1) the 
development of a problem statement, (2) the construction and use of a causal 
mathematical model based on system knowledge, and (3) the data requirements 
determined from the steps of the methodology. Also discussed is how this methodology 
differs from the method of first collecting significant amounts of data then attempting to 
develop models from that data. 

Two major types of models, causal and empirical, are compared and discussed; 
this includes the strengths and weaknesses of each type. This paper also discusses why 
causal models are preferred, the importance of understanding that causal models contain 
system relationships and empirical models contain data relationships, and the different 
kinds of graphical and mathematical models for each model type.  Different kinds of data 
and measurement scales for data are also described. System knowledge, needed for 
developing causal models, is discussed and depicted in a table containing different levels 
of system knowledge and types of system knowledge.  

The modeling process and obstacles that may arise during this process are 
described. The importance of validation of models, model solutions, and model theories 
is stressed. Lastly, the use of domain experts in problem solving is discussed including 
why it should be one of the approaches considered for solving social system problems. 
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A PERSPECTIVE ON MODELING, DATA, AND KNOWLEDGE 
 
 
 

I. INTRODUCTION 
 
   This paper was written at the request of the National Academies’ National 

Research Council (NRC) for the workshop “Unifying Social Frameworks” sponsored by 
the Office of Naval Research and hosted by the NRC on August 16-17, 2010. The paper 
is to address the question Methods, Tools, Frameworks and Models: What are the 
strengths and weaknesses of “categories” of approaches for different “kinds” of 
knowledge and data? The question is open to one’s interpretation and is to be answered 
based on one’s personal expertise and interest. 

My expertise and experience is in Operations Research. Much of my academic 
research focused on developing practical methods and techniques in various methodology 
areas of modeling and simulation, including validation. Earlier academic research 
included developing models for system performance evaluation, especially of computer 
systems, which included statistical analysis of computer system data. For over twenty-
five years, the U.S. Air Force supported my academic research and applied work on 
military problems. I have taught a variety of operations research, statistics, and system 
performance courses. Experience doing academic research, solving real world problems 
for the military and industry, and teaching provides the foundation for my views 
presented in this paper.   

 The approach to problem solving that I use is the operations research 
methodology of problem solving (Ackoff, 1956; Hiller et al., 1986; Jensen et al., 2003).  
The first step is to develop a problem statement by formulating the problem.  This 
requires data regarding the situation or system under investigation. The second step is to 
construct (develop) a mathematical model for the problem. This again requires data about 
the situation or system under investigation. The third step is to obtain a solution to the 
model.  This frequently requires iterations among the earlier steps. The fourth step is to 
test (validate) the model and solution. This step also needs data on the system or situation 
being modeled. If the model or solution is found to be unsatisfactory, then one must 
iterate back to an earlier step. Testing continues until a satisfactory model and solution is 
obtained, iterating as needed. (Note: it is possible that a satisfactory model and solution 
cannot be obtained.)  The fifth step is to establish controls over the solution. It is possible 
that some aspect, variable, or input of the system (or situation) may change or a model 
assumption made no longer holds causing the solution to become unsatisfactory. Thus, 
controls must be established to know when a change has occurred that requires a new 
problem solution. The final step is to develop an implementation method to use the 
solution developed for the problem. 

    It is important to note that in the operations research method of problem 
solving, the data requirements are determined by what data are needed in the various 
steps of the methodology. Thus, only the data required needs to be collected. It is also 
important to note that this method differs from at least one interpretation of the question 
we are asked to answer—namely, determining what types of models with their strengths 
and weaknesses can be obtained from different “kinds” of collected data. This latter 
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approach requires collecting, storing, and maintaining data that may not be needed. It is 
usually expensive and time consuming to collect, store, and maintain data.  

 This author believes the question that was asked of this paper is the reverse of 
what should be addressed; namely, what should be addressed is ‘What kinds of data, 
knowledge, and tools are needed to develop different types of models?’ This question 
would apply to the operations research problem-solving method given above. The 
reminder of this paper discusses different aspects of both the question asked and the 
question suggested in this paragraph. Also included is a section on ‘domain expert 
approach’, which discusses the use of domain experts in problem solving instead of using 
only models. 

 
II.   DATA  

 
     Data generally refer to some collection of numbers, characters, images, or 

audios that are unprocessed. Knowledge is obtained from data by interpreting the data or 
through processing the data. (Various kinds of knowledge are needed for modeling such 
as the different system variables, the relationships between and among the system 
variables, the causal relationships, and the system theories.) 

    It is important in modeling to know about different scales of measurement 
that can be used for data. There are four common measurement scales: nominal, ordinal, 
interval, and ratio. (These scales were initially developed for statistical analysis.) 
Nominal scale, the lowest level scale, is where data can be only be classified into 
mutually exclusive categories and the categories have no relative ordering. The next level 
scale is the ordinal scale and here data can only be classified into mutually exclusive 
categories and there is rank order among the categories. The next level of scale is the 
interval scale where the distance between numbers or units on the scale is equal over all 
levels of the scale and no absolute zero point exist. An example of an interval scale is the 
Fahrenheit (or Centigrade) scale of temperature. The ratio scale is the highest level scale; 
its distance between numbers or units on the scale equal over all levels of the scale and 
there is a meaningful absolute zero point. This scale allows for the interpretation of ratio 
comparisons. An example of an ratio scale is the height of individuals where we can say 
an individual who is six feet tall is twice as tall as an individual who is three feet tall (a 
ratio comparison).  

     The type of data that can be obtained on the system or situation is extremely 
important and must be considered when developing a model. If, for example, the only 
data available on a variable is the direction (plus/minus or increase/decrease) that it takes 
under different conditions, we have a qualitative variable.  This will usually restrict the 
type of model that may be developed to a qualitative model. If both the direction and 
magnitude of a variable can be obtained, we have a quantitative variable.  Quantitative 
models usually require all of its variables to be quantitative. 

     It is expensive to collect, store, and maintain data. Using the operations 
research problem-solving method is a cost effective approach for data because this 
method determines the minimal data that needs to be collected and stored. Collected data 
should be stored in a database. Data stored can be structured or unstructured. Data stored 
in a database using a data model are usually referred to as structured data.  Such data 
could be observations on variables of a system. Data stored not using a data model are 
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usually referred to as unstructured data. Examples of unstructured data are audios, videos, 
web pages, and unstructured text such as the body of an e-mail message. Structured data 
are what is commonly used in the operations research problem-solving method. There are 
software tools and processes that can convert unstructured data into structured data under 
certain situations. (There are also tools and processes to convert qualitative data into 
quantitative data under certain situations; one example is the Analytic Hierarchy Process 
(AHP) discussed in Section VII.) 

     Data are needed for different purposes using the operations research problem- 
solving method described above.  Data are required to develop the problem statement, 
system understanding and theories, the model, and model solution as well as to test 
(validate) the model and solution, and to utilize during the model’s use in operations.  

 
III.   MODELS 

 
    A model is an abstraction of some system or situation. Since a model is an 

abstraction of some system, this means that one-hundred percent of the system is not 
included in a model. A model is developed for a specific purpose. This means then that 
there can be several models of the same system with different models having different 
purposes. Furthermore, there can be different levels of abstraction of a system. Models 
having a higher level of abstraction are simpler than models having lower level of 
abstractions as these latter models contain more detail. Higher level models may not be 
able to describe the system adequately for the model’s desired purpose or to provide the 
information desired. Lower level models may be too complex to develop or to allow 
development of solutions for them. All developed models should be validated to ensure 
they are correct for the purpose of the model. 

     There are three classes of models: analog, iconic (physical), and symbolic. 
We are only interested in symbolic models in this paper. Symbolic models use symbols. 
(See Table 1 for a breakdown of symbolic models.) There are two major types of 
symbolic models: causal models and empirical models. Causal models use and contain 
the causal relationships that occur in the system.  System knowledge is required to 
develop this class of models, which consists of the system variables and their 
relationships with each other, causal relationships, system theories, etc. Empirical models 
are models developed purely from system data (observations) and use relationships found 
among the data (system theories, etc. are usually not used). It is extremely important to 
understand the difference between these two types of models: causal models contain 
system relationships and empirical models contain data relationships.  Causal models are 
preferred since they contain how the system works. With causal models, one can 
hopefully detect if some aspect, variable, or input of the system changes or a model 
assumption made no longer holds in order to know that the model and solution may have 
become inappropriate—whereas with an empirical model this is usually not possible.  
This distinction is important.  

Causal and empirical models can be either a graphical (visual) model or a 
mathematical model. Graphical models are models that use graphical symbols to show 
relationships that describe a system or some aspect of a system. Mathematical models use 
symbols, logic, and equations to describe their relationships and allow for analytic or 
numerical solutions. There are two kinds of mathematical models used for causal models: 
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analytic models and simulation models.  An analytic model consists of a set of equations 
that characterize a system. A simulation model ‘mimics’  the operating behavior of a 
system and contains the system’s functional relationships. Experiments are performed on 
this mimic by ‘running’  (‘operating’) the mimic. There are different kinds of graphical 
models used for causal models; usually, however, these are some kind of network (graph) 
model.  Two examples are PERT networks (Hiller et al., 1986) and control flow graph 
models (Sargent, 1996). 
 

Table 1. Symbolic Models 
 
                      
        
 
 
 
 
 
 
 
 
 
 
 
Empirical models are usually descriptive models. Mathematical models that are 

empirical models contain mathematical equations that describe relationships found 
among the data contained in a subset of a data set of observations of some system.  Two 
common kinds of mathematical models used for empirical models are (statistical) 
regression models and neural network models. There are different kinds of graphical 
models used for empirical models; they are, however, usually some kind of network 
(graph) model. An example is a network drawn from a set of observations of some 
system where each node represents an individual contained in the set of observations, and 
the edges (branches) represent any communication that occurred between individuals that 
are contained in the set of observations. 

 
IV.   SYSTEM KNOWLEDGE 
 
    In order to build (construct/develop) causal models for problem solving, 

scientific knowledge of the system is required. The amount of (scientific) system 
knowledge determines what kind of causal model can be developed. Table 2 presents a 
high level view of levels of system knowledge versus different kinds of system 
knowledge. Five levels of system knowledge from ‘none’ to ‘complete’ are listed 
horizontally across the table. Different kinds of system knowledge are displayed 
vertically down the table. The table cells contain the level of knowledge.  Variables 
indentified qualitatively or quantitatively refer to those system variables that have been 
indentified and determined to be either qualitative or quantitative. (If a variable is 
quantitative, then it is also qualitative since a quantitative variable contains the 

TYPE FORMALISM KIND 
 

Graphical 
• Network 
• Others 

 
 

Causal 
 

 
Mathematical 

• Analytic 
• Simulation 

 
Graphical 

• Network 
• Others 

 
 

Empirical  
Mathematical 

• Regression 
• Neural Network 
• Others 
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data/information needed for a variable to be qualitative.)  Causal relationships can be 
qualitative, quantitative or both qualitative and quantitative. If some causal relationship is 
known quantitatively, then that causal relationship is also known qualitatively because 
qualitative understanding is included in quantitative understanding. It is desirable to 
know the theories of how a system and its sub-systems work; these are referred to as the 
system theories. 

 
Table 2.  System Knowledge 

 
SYSTEM KNOWLEDGE  

 NONE LITTLE SOME CONSIDERABLE COMPLETE 
VARIABLES 
INDENTIFIED 

• Qualitative 

 
 

none 

 
 

Some 

 
 

All 

 
 

all 

 
 

all 
• Quantitative none none/few some/most all all 

CAUSAL 
RELATIONSHIPS  

• Qualitative 

 
 

none 

 
 

Some 

 
 

Most 

 
 

all 

 
 

all 
• Quantitative none none/few some/most most/all all 

SYSTEM THEORIES none none/few Some most all 

 
When one proceeds to solve a problem using the operations research problem-

solving method, system knowledge is used in the first two steps: formulating the problem 
and developing the model.  To develop a ‘reasonable’ qualitative causal model, system 
knowledge must be at ‘some’ or more.  To develop a ‘reasonable’ quantitative causal 
model, system knowledge must be at ‘considerable’ or more. Since quantitative causal 
models are usually desired, we will restrict our discussions to quantitative models. If the 
system knowledge is not at ‘considerable’ or more, a choice must be made on how to 
proceed. Various approaches are discussed in the next section, which is on modeling.  

Further development of system knowledge frequently occurs. The time required 
to make advances in system knowledge varies over a large range and usually depends on 
the system of interest. Systems vary from being simple to complex and some types of 
systems take much longer to learn about than others. On occasion additional system 
knowledge can be obtained quickly and thus can be done as part of solving a specific 
problem. Most often, however, the time required to obtain additional system knowledge 
takes a considerable amount of time—months or years—especially if a large amount of 
research is required. (Developing system knowledge on most social systems will 
probably take a very long time.) 

In developing additional knowledge, recall the eighty percent rule, which says 
that eighty percent is usually sufficient enough for most problems.  If we view the system 
knowledge column of ‘considerable’ in Table 2 as the eighty percent mark, this is what 
the goal of system knowledge should be. Recall that if we have ‘considerable’ system 
knowledge on a system, a ‘reasonable’ quantitative causal model should be able to be 
constructed. Too often, individuals want complete system knowledge of a system or a 
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perfect model that requires complete system knowledge. This is usually not necessary 
and takes considerable time and money to accomplish—if it is ever reached. 

To develop additional system knowledge, research must be performed on the 
system.  Perhaps additional system variables must be identified, additional causal 
relationships determined, or new system theories developed. Figure 1 (Copyrighted figure 
taken from Sargent, 2001 and 2009) shows how system theories are developed. Note that 
system theories can be hypothesized from a model as well as from the system. It is 
extremely important to note that new system theories must be validated. The same 
process shown for developing system theories also applies for determining causal 
relationships. (Further discussion of this figure is contained in Sargent, 2001 and 2009.)   

 
  Figure 1. Representations of Real World and Simulation World with  

       Verification and Validation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

ADDITIONAL 
EXPERIMENTS 
(TESTS) NEEDED 

SYSTEM 
(PROBLEM 

ENTITY) 
SYSTEM 

DAT A/RESULTS 
   REAL 

WORLD 

EXPERIMENTING 

ABSTRACTING HYPOTHESIZING 

SYSTEM 
EXPERIMENT 
OBJECTIVES 

Theory 
Validation 

SIMULATION 
EXPERIMENT 
OBJECTIVES 

SIMULATION MODEL 
DAT A/RESULTS 

SIMULATION 
MODEL 

SPECIFICATION 

SIMULATION 
MODEL 

SIMULATION 
WORLD 

SPECIFYING EXPERIMENTING 

IMPLEMENTING 

HYPOTHESIZING MODELING 

SYSTEM 
THEORIES 

CONCEPTUAL 
MODEL 

Operational 
(Results) 
Validation Conceptual 

Model 
Validation 

Specification 
 Verification 

Implementation 
Verification 



Do Not Circulate or Cite Without Author’s Permission 

Robert Sargent 
Page 10 

V.    MODELING  
 
In modeling a system to solve a specific problem, one should abstract the system 

to have a parsimonious model that will address the problem being studied. A 
parsimonious model is as simple as possible containing the fewest number of variables, 
simplest and fewest causal relationships, etc. while being able to serve its purpose. 
Having a parsimonious model should be a goal no matter what type of model is being 
developed.  

    One should strive to have a causal model (revisit Tables 1 and 2). 
Constructing a causal model requires sufficient system knowledge on the system. The 
preferred type of causal model is an analytic model with the preferred solution being 
analytic; and if an analytic solution cannot be found, then hopefully a numerical solution 
can be obtained, which is usually a numerical algorithm. If an analytic model and its 
solution cannot be developed, then hopefully a discrete-event simulation model can be 
developed.  If a simulation model cannot be developed, then a decision must be made on 
how to proceed. This decision depends on the reason(s) why a causal model cannot be 
developed. 

 If the reason that a causal model cannot be developed is due to the lack of 
system knowledge, then one needs to determine if sufficient system knowledge can be 
developed to construct a causal model within the desired time-frame for obtaining a 
problem solution.  If the answer is yes, then this is what is usually done. If the answer is 
no, then the next question to be asked is, what level of causal model is being attempted to 
be constructed? We do not need a perfect model; often, the eighty percent rule works 
meaning that a ‘reasonable’ model gives a satisfactory answer to our problem. Recall 
from the System Knowledge Section that ‘considerable’ system knowledge should be 
sufficient to construct a ‘reasonable’ model. Hopefully, a ‘reasonable’ causal model can 
be constructed.  If this is not possible, then another decision must be made. 

 There are two major causes why a ‘reasonable’ causal model cannot be 
constructed: (1) the model complexity being required to solve the problem does not allow 
a causal model and solution to be developed, and (2) there is a lack of sufficient system 
knowledge to develop a causal model.  Model complexity can be caused by several 
things. Some examples are: (a) the ‘curse of dimensionality’—too many variables or 
attributes needed in the model; (b) ‘mixture of types of variables’—the combination of 
continuous and discrete variables is required and possibly has two types of discrete 
variables, one type with two outcomes and the other type with numerous outcomes; (c) 
‘problem solution requirement’—the solution is required to have integer values or a 
combination of solution values of which some must be integers and others can have 
continuous values; and (d) the problem requires a complex model.  

 To proceed in trying to develop a causal model, one can move into using the 
‘increment method of modeling’ where a simple causal model is developed initially and 
more complex causal models are developed over time as it becomes possible to develop 
more complex causal models.  Simpler causal models can be developed in several ways. 
One way is to reduce the scope of the problem to reduce the scope of what is required of 
a causal model. A second way is to develop the most complex causal model possible 
based on available system knowledge. A third way is to abstract at a higher level to 
obtain a simpler causal model. A fourth way is to do some aggregation. The reason that 
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one might use the increment method of causal model development is that the simple 
causal model initially developed may give a better solution to the problem than the 
current solution method. Then, as one is able to increment the causal model to a better 
causal model for the problem, a new model solution is developed that hopefully gives a 
better problem solution.  

 It is possible that a causal model cannot be developed, in which case one must 
decide how to proceed in solving the problem.  One approach is to attempt development 
of an empirical model. But, sufficient data must be available to attempt to develop an 
empirical model. There are major weaknesses in using empirical models in problem 
solving and it is possible that an empirical model cannot be developed. (Empirical models 
are discussed in Section VI.). Another approach to problem solving is to have system 
knowledgeable experts (humans) use established domain expert methods to obtain 
problem solutions instead of using models. Sometimes using system knowledge experts 
leads to better problem solutions than using empirical models; this latter approach is 
discussed in a Section VII.  

 In modeling, it is extremely important to remember that any model and solution 
developed must be validated to ensure that it is correct. This is part of any modeling 
procedure and much has been written about model validation (for discussion of validating 
simulation models, see Sargent, 2009). 

VI.   EMPIRICAL MODELS 
 
There is a school of thought that believes models should be developed directly 

from data. Significant amounts of data are first collected and then models are developed 
directly from the data with little or no use of system knowledge. These types of models 
are called empirical models as was discussed in Section III (revisit Table 1). Some 
individuals believe this way of modeling should be the preferred choice for model 
development. This author does not believe this approach is the preferred way to proceed 
in modeling, including for modeling social systems. Instead, this author believes the 
preferred approach is to use the operations research method discussed in the previous 
sections.    

    Wanting to develop models directly from data reminds me of the story of the 
boy looking for a pony in the manure pile. The boy is asked why he is digging through 
the manure pile and he answers that with such a large pile of manure, there must be a 
pony somewhere. The boy at least has an objective: trying to find a pony. I find there are 
two types of people trying to develop models directly from data: (1) those who are 
attempting to solve problems—they have problem statements—and (2) those that are 
looking for models, but have no problem they are trying to solve.  Those in the initial 
group may have limited success. Those in the latter group I do not understand; 
furthermore, I believe they are wasting resources in attempting to find models that have 
no purpose.  

 There are two types of data: structured and unstructured.  Empirical models are 
usually developed from structured data. Recall that empirical models are usually 
descriptive models. Graphical empirical models, especially networks or graphs, are 
frequently useful for communicating about, gaining insights into, and developing 
understanding of simple systems. They are often less useful for complex systems because 
the networks become too complex. Mathematical empirical models contain mathematical 
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equations that use data relationships found in data sets. Considerable data are usually 
required to develop mathematical empirical models. A subset of the data set is used to 
develop an empirical model, and a different subset of the dataset is used to test (validate) 
the developed empirical model.  

There are different kinds of mathematical empirical models with two common 
kinds being the (statistical) regression models and the neural network models. Regression 
models have requirements on the data that are used to develop them.  Neural network 
models also have requirements on data used to develop them; however, their data 
assumptions requirements are usually less than what is required for regression models.  It 
is important to understand that mathematical empirical models are mathematical models 
that use data relationships found in the set of data used to develop the empirical model. 

 A major weakness of empirical models is that it is impossible to know, when 
using an empirical model on a different data set, if anything in the new data set has 
changed from the data subset initially used to develop the model.  For example, if the 
data is coming from a system and something in that system changes, there is no way to 
tell from the new data that it is different from the data used to develop the empirical 
model.  Consider for example the following simple system: data is kept on whether a 
man’s dog howls each night as a string of zeros and ones—one if the dog howls that night 
and zero if it does not.  Also, a string of zeros and ones are kept each night on whether 
the moon shines on the dog—one if the moon shines that night on the dog and zero if it 
does not.  There is a perfect match between the zeros and ones in the two strings, which 
results in a simple empirical model.  The man, who happens to be blind, is told that if his 
dog howls any night that means the moon is shinning on the dog as this is what the 
empirical model says occurs. One night the dog howls but the moon is not out. The 
reason the dog howled is because a helicopter flew over the dog and its spotlight shinned 
on the dog causing the dog to howl. Both the model and the man are blind to what actual 
happened as both say the moon was shinning.  

 Other weaknesses of empirical models, especially mathematical empirical 
models, are difficulties that may be caused by (1) the determination of which variables to 
use, (2) a mixture of variable types (qualitative/quantitative or discrete/continuous), (3) 
the curse of dimensionality, (4) the lack of sufficient number of observations on some 
specific variables, and (5) an overwhelming amount of data in the data set such that no 
data relationships can easily be found. 

 Empirical models have uses but their uses are limited. Their use should usually 
be limited to situations where it is known that the system will not change (a static 
system), which will hopefully result in the data not changing. (An example of this might 
be using an empirical model to predict if an individual will get a disease based on a set of 
specific measures of that individual, where the empirical model was developed from a 
large data set of specific measures.) If the system being studied is dynamic (i.e., the 
system is changing over time), then the data of such a system would be expected to 
change over time and thus an empirical model would probably not be appropriate. 
(Probably many of the social systems fall into this latter category of being dynamic.)  It is 
usually difficult to develop empirical models and often they cannot be developed.  Use of 
system knowledge sometimes helps in developing empirical models but many people do 
not like to use empirical models because of the weaknesses discussed above.  
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 Unstructured data are generally not useful for developing models. This type of 
data lends itself to certain types of analysis; e.g., looking for certain types of content. 
Sometimes certain types of analysis may help obtain system understanding. An example 
of this might be determining the number of different content types in mutually exclusive 
categories (or, alternatively, different types of actions taken). There are software tools 
that can convert certain types of unstructured data into structured data in specific 
situations. The resulting structured data can sometimes be used for developing empirical 
(and causal) models.  

 
VII.   DOMAIN EXPERT APPROACH 
 
 An alternative to using only models in problem solving is to use domain experts. 

A domain expert is an individual who is extremely knowledgeable in some domain, or 
topic.  These experts might be experts on the system, the problem being addressed, etc. 
These experts then address the problem using methods that have been established for use 
in problem solving. Two examples of these methods are the Analytic Hierarchy Process 
(AHP; Saaty, 1980) and the Delphi Method (Hiller et al., 1986). AHP provides a 
comprehensive and rational framework for structuring a decision to a decision problem, 
for representing and quantifying its elements, for relating those elements to overall goals, 
and for evaluating alternative solutions. The Delphi Method helps experts reach for a 
consensus on an answer to a specific question (see 
http://en.wikipedia.org/wiki/Delphi_method). These two methods have received 
extensive use in problem solving.   

One such use of these methods is in a methodology developed to optimally design 
console panels (Sargent et al., 1997). Domain experts and the Delphi method are used to 
develop a ranking of mutually exclusive groups of components, in other words, to 
convert a set of groups from a nominal scale to an ordinal scale. Domain experts and 
AHP are used to handle the cognitive relationships between the panel operator and panel 
components to obtain a ratio scale set of weights for ‘component groups’ that is used in 
an optimization model. Note the use of three measurement scales discussed in Section II.  

 Problem solving methodologies to solve specific problems can be developed 
using domain experts that are scientifically based. These methodologies may or may not 
include the use of one or more models. This approach of using domain experts as part of 
the problem-solving methodology sometimes (1) provide solutions to problems faster 
than using only models and (2) lead to better solutions than can be obtained from using 
single complex causal models or from empirical models because issues that have not 
been included in a model can be considered by the experts. Using the domain expert 
approach to solve problems in social frameworks might be much more productive than 
trying to use a pure modeling approach. 

 
VIII.   SUMMARY 
 
 The operations research methodology for problem solving was presented in 

Section I. The factors that are extremely important about this methodology and 
differentiate it from many other problem-solving methodologies are as follows: (1) 
operations research methodology starts with the development of a problem statement 

http://en.wikipedia.org/wiki/Delphi_method)
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(step 1 of the methodology), (2) it uses a causal model constructed for the problem using 
system knowledge (step 2 of the methodology), and (3) its data requirements are 
determined from the steps of the methodology. This methodology differs considerably 
from first collecting significant amounts of data then attempting to develop models from 
that data. In Section II, different kinds of data and different types of measurements scales 
for data were discussed, both of which are important in modeling. 

 Discussed in Sections III, V, and VI were two major types of models (causal and 
empirical), including the strengths and weaknesses of each type and why causal models 
are preferred. In Section IV , system knowledge and need for developing causal models 
was discussed along with how to develop additional system knowledge. The process of 
modeling was described in Section V including obstacles that can occur during modeling. 
In Section VII, the use of domain experts for solving problems instead of using only 
models was discussed noting that this approach can sometimes provide better and faster 
solutions than using only models.  

 An interview with Robert E. Foster, retiring Director of BioSystems, DoD, is 
published in the Spring 2010, Issue No. 5, HSCB (Human Social Culture Behavior) 
Newsletter.  Some quotes from his comments on the HSCB Modeling Program:  

(1) “… models and the science …, not work-station tools, should be our foci.”   
(2) “Stick to developing theory and models but don’t forget to attend to the data 
issues.”   
(3) “… keep the 80%, five-year solution as an acceptable goal in contrast to     
setting goals based on 20 year-to-perfection delusions.”  

 

I agree with most of what Robert E. Foster said in this interview about the HSCB 
Modeling Program.  Regarding the first quote, please note the emphasis on developing 
science and models—not collecting significant amounts of data for building empirical 
models. Regarding the second quote, I hope this includes using data to validate models 
and theory. Regarding the third quote, I believe he is too optimistic in believing sufficient 
theory can be developed in five years to have eighty percent solutions.  

I strongly believe it is highly desirable for the HSCB modeling program and other 
programs involved with the types of problems being addressed by this workshop to start 
supporting the development of approaches using domain experts as discussed in Section 
VII. I believe good solutions can be obtained to some of the problems of interest 
considerably faster using the domain expert approach rather than waiting for the theory 
(system knowledge) and only models to be developed. For example, a good solution 
exists to the problem of optimally designing console problems (Sargent et al., 1997) 
discussed in Section VII using domain experts to solve two of the steps in the design 
process. Here, domain experts and AHP are used to handle cognitive relationships; and 
domain experts and the Delphi Method are utilized for developing rankings of component 
groups. This is done instead of probably waiting decades for theory (system knowledge) 
and models to develop for handling the cognitive relationships and the ranking of 
component groups in a solution that uses only models.    
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