CAREER CHOICES AND EARNINGS TRAJECTORIES OF SCIENTISTS

Rajshree Agarwal University of Maryland

A tale of two studies...

- Industry or Academia, Basic or Applied?: Career Choices and Earnings Trajectories of Scientists
 - Rajshree Agarwal and Atsushi Ohyama
 - Forthcoming in Management Science

Who has it all?: Gender Gap in Earnings of Scientists and Engineers in Academia and Industry

- Rajshree Agarwal, Waverly Ding and Atsushi Ohyama
- Work in progress

Ne'er the twain shall meet...?

 Satisfactory progress in basic science seldom occurs under conditions prevailing in the normal industrial laboratory.
Science, The Endless Frontier (Bush, 1945)

 Applied research is facing a shortage of its principal raw materials

Charles Stine, Speech to Dupont Executive Committee, 1926 (Hounshell and Smith 1988, p. 366)

Empirical context

- Scientists and Engineers Statistical Data System (SESTAT)
 - Survey of Doctoral Recipients 1995-2006
 - Graduates from US universities, working in the US
- Definition of careers
 - Industry—principal employment in private, for profit institution
 - Academia—principal employment in 4 year college or university, medical school, or research affiliates of university
 - Basic research study directed toward gaining scientific knowledge primarily for its own sake
 - Applied research study directed toward gaining scientific knowledge to meet a recognized need

Are the careers really orthogonal?

	Counts		Percentages	
	Basic Science	Applied Science	Basic Science	Applied Science
Academia	204,542	167,865	Total: 26.0	Total: 21.3
			Column: 66.2	Column: 35.1
			Row: 54.9	Row: 45.1
Industry	104,393	310,596	Total: 13.3	Total: 39.4
			Column: 33.8	Column: 64.9
			Row: 25.2	Row: 74.8

Source: 2003 SESTAT data using sample weights in SESTAT

Career choices and earnings trajectories: In a nutshell...

- Main research questions
 - What factors impact scientist career choices between industry or academia, and basic or applied science?
 - What are the implications of career choice on earnings trajectories?

Key predictions and findings

- A taste for non monetary returns
 - sorts scientists to choose careers in academia over industry,
 - but has little impact on the choice between basic and applied science
- Ability
 - differentiates among academic scientists,
 - but no significant differences among industry scientists
- Earnings profile
 - In industry, similar trajectories for basic and applied researchers
 - In academia, basic researchers start at lower levels of compensation, but earnings evolve at a higher rate
 - Basic researchers in academia ultimately make the same as industry scientists

Model Setup: Scientific Labor Markets

- Incorporates matching theory into traditional lifecycle models of human capital investment
- Supply side heterogeneity in ability and preferences of scientists
- Demand side heterogeneity in complementary physical and human capital
 - Basic scientists have greater access to physical capital than applied in academia, reverse is true in industry
 - Basic and applied scientists are complements in scientific production function in industry, but not in academia

Positive Assortative Sorting: Basic vs. Applied and Academia vs. Industry

returns

returns

Earnings Evolution

Policy implications

- Are we really doing all that we can in the universities to equip PhD students for the career options other than basic academic research?
 - There is *no* evidence of ability sorting between academia and industry
 - Need to develop programs
 - that systematically complement "science skills" with "business savvy"
 - that provide "career counseling" for PhD students to match them to career options
- Productivity gains (and higher earnings) in industry is due to true synergies between basic and applied science
 - If we want to encourage more university technology transfer, we need to break the "silos" of applied and basic research in academia

A tale of two studies...

- Industry or Academia, Basic or Applied?: Career Choices and Earnings Trajectories of Scientists
 - Rajshree Agarwal and Atsushi Ohyama
 - Forthcoming in Management Science

Who has it all?: Gender Gap in Earnings of Scientists and Engineers in Academia and Industry

- Rajshree Agarwal, Waverly Ding and Atsushi Ohyama
- Work in progress

Paycheck Fairness

What about highly skilled labor markets?

- Our explicit focus:
- Individuals with a PhD in Science and Engineering

	Industry (private, for profit)	Academia (4 year educational institutions)
Male	155,560 (80.6%)	182,920 (67.4%)
Female	37,340 (19.4%)	88,620 (32.6%)

Source: NSF SESTAT data, 2006

Gender issues salient in both sectors

"Having it all...depended almost entirely on what type of job I had" Anne-Marie Slaughter, Princeton University

"The moment a woman starts thinking about having a child, she doesn't raise her hand anymore" Sheryl Sandberg, Facebook

Gender gap in academia vs. industry

- Main research questions
 - Is the gender gap higher in industry or academia?
 - What are the potential explanatory factors, particularly as it relates to family status?
- Quick poll…
 - Where do *you* think that the gender gap is higher?
 - Why?
- Methodology to estimate gender gap
 - Parametric (OLS) regression with controls for ability, demographics, family status...
 - Non parametric Coarsened Exact Matching by creating "twins" based on ability, demographics, family status...

OLS Estimation of Earnings Gap

(LogSalary ~ marriage, children, spousal working, school ranking, parental edu, exp, exp², white, citizenship, occupation)

OLS vs. CEM estimation

Possible Explanations?

- "Work-life" balance issues
 - Dual Careers
 - Women in academia may be more restricted in options of universities in major metropolitan areas
 - The "Baby Penalty"
 - Child rearing responsibilities disproportionately affect women in academia given coincidence of having babies and getting tenure
- "Good Ol' Boys" effect
 - Market forces may be stronger in industry vs. academia
- The Pink Ghetto argument
 - Women are more segregated into lower paying sectors in academia than in industry
- Cohort effects
 - Widening gap over experience maybe due to compositional differences in cohorts

Your help...

- Tried to do sub-samples to get at "pink ghetto effects"
 - Not enough observations to get CEM matches
- Cohort differences?
 - Will be getting 2008 SESTAT data, but still have issues related to number of distinct points across cohorts
- Other human capital investment considerations?
- How to attribute residual to "Good OI Boys Club"?
- Other??

