An Evidence-Based Assessment of Research Collaboration and Team Science: Patterns in Industry and University-Industry Partnerships

Barry Bozeman
Craig Boardman

Presented by
Susan Winter, UMD
Organization of Scientific Work

- **Old Science**
 - Brilliant Solitary Researcher

- **Modern Science**
 - 90% of research in STEM fields
 - Collaboration
 - Teams
 - Networks
 - Co-authorship
 - Specialized Training
 - Complex problems
 - Collaborative Technologies
 - Shared Resources
 - Public Policies
Collaboration

Definition
- Social processes
- Pool human beings’ experience, knowledge and social skills
- Objective is to produce new knowledge

Collaborators may never meet or interact with one another
Collaboration

- Levels of Analysis
 - Individuals
 - Groups and Teams
 - Organizations

- Study Approaches/Methods Are Diverse

- Sector Differences

- Setting
 - Industry
 - Most Research Collaboration is Here
 - Academia
 - Most Studies of Research Collaboration are Here
Study Focus

✓ Boundary-Spanning Research Collaborations
 ➢ University-Based
 ➢ University-Industry Partnerships
 ➢ Industry Interdisciplinary Research Collaborations

✓ Forms
 ➢ Multi-Discipline, Multi-Purpose University Research Centers
 ➢ R&D Alliances
 ➢ Consortia
 ➢ Joint Ventures
Study Questions

- Influences on research organization productivity and effectiveness
 - Needed organizational structures, policies, practices and resources
 - Human resource management
 - Cyberinfrastructure
 - Effective research management approaches, partnership models and leadership styles
 - Incentives for academics
 - Intellectual property and conflict of interest issues

- Reasons for failure

- Implications for practice
Sampling Frame

- **Empirical Evidence**
 - Quantitative
 - Qualitative

- **Not**
 - Conceptual Models
 - Unverifiable Personal Insights
 - Unsupported Anecdotes or Opinions
Theoretical Frame

- Scientific and Technical Human Capital (STHC)
 - Social Knowledge, Skills and Resources
 - Formal Education, Training, Social Relations
 - Network Ties
 • Other Scientists, Funding Agents, Vendors, Entrepreneurs, Equipment Developers, Technicians, Public Officials, etc

- Collaboration
 - Is Driven By the Need to Pool STHC to Address Challenges
 - Develops STHC
Organizing the Literature

- Inputs and Resources
 - People and Groups
 - Materiel
 - Organizational Capital

- Processes and Activities
 - Project Level Management and Leadership
 - Organization Level Management
Organizing the Literature

- Outputs, Outcomes, Impacts
 - Enhanced Outputs and Impacts
 - Knowledge-Focused, Property-Focused
 - Enhanced Scientific and Technical Human Capital
 - Negative Impacts of Collaboration

- Contextual Factors
 - Sector
 - Function
 - External Resources Environment
Findings

- Engineering Disciplines Most Likely to Collaborate with Industry

- Disciplinary Heterogeneity
 - Increased Productivity
 - Heterogeneity of Incentives and Motivations
 - Hierarchical and More Formalized Organizationally

- Little Research Has Considered Past Productivity as an Antecedent to Collaboration
 - Measurement Issues with Pubs and Patents
Findings

- Heterogeneous Research Experiences
 - Findings are Mixed

- Prior Acquaintance and Trust
 - Very Important
 - Easiest with High Similarity
 - Can Compensate with Formal Structures and Authorities
Findings

- **Tangible Capital**
 - Collaborate to Gain Access to Resources and Capabilities

- **Intangible Organizational Capital**
 - Ability to Coordinate and Manage Diverse Resources
 - Induces Coordinated Problem Solving

- **Most Important Resource and Input to Collaboration**
Management and Leadership

- Project Level Teams Well Studied
 - Best Local Practices May Not Be Robust Across Situations
 - Equifinality (Multiple Possible Practices) So Successful Collaborations Can Differ
Management and Leadership

- Organizational Level
 - Levers for Coordinating Inputs and Resources
 - Goal Congruence, Resource Interdependence, Formal Authorities

- Center Management Underdeveloped
 - Little Research on Effective Responses
Collaboration Assessment

- Products
 - Knowledge Focused
 - Publications, Citations
 - Property Focused
 - Patents, Patent Citations, Commercial Products
 - Capacity Building

- Measurement Weaknesses Abound

- Baseline Data N/A
 - Productivity When Not Collaborating
Who Benefits?

- Increased Science and Technology Human Capital

 - Additive so Improved Individual, Group, Lab, Firm and Research Center STHC

 - Mediated by Ability to Deploy the STHC (Intangible Organizational Capital)
Study Questions

- Effective research management approaches, partnership models and leadership styles
 - **Evidence Base Is Minimal**
 - Importance of
 - Monitoring of Terms of Contracts
 - Trust
 - Alliance Management
 - Proximity

- **Management Practices of Collaboration Organizations Often Poorly Thought Out**
Reasons for Failure

- **Poorly Understood**
 - Threshold Effects
 - Interactions Among Variables

- Inherent Instability?

- Intellectual property and conflict of interest issues
 - Alliance Management Skills
Recommendations

- Much Is Well-studied Already
 - Dyads, Triads, Small Groups
 - Co-authorship and Patenting Patterns
More Research Needed

- How Choose Among Available Collaborative Institutions and Modalities
- Institutional Failures and the “Dark Side”
- Science and Technology Human Capital Aspects
More Research Needed

- Management of University-Based Centers
 - Scientists Expected to Become Managers
 - Inadequate Professional Managerial Training

- Field Experiments/Find Patterns Across Instances

- Impact-Focused Research
 - Multiple Informants, Longitudinal
Thank You