

Low Back Biomechanics and Patient Handling

William S. Marras, Ph.D., CPE
Honda Chaired Professor and Director
Biodynamics Laboratory
The Ohio State University
Columbus, Ohio

<http://biodynamics.osu.edu>

Review Study of Low Back Pain Prevalence

Work-related back pain in nurses

Hignett, S.

(2008) *J. Advanced Nursing* 23(6), p. 1238-1246

- LBP point prevalence = 17%
- LBP annual prevalence = 40-50%
- LBP lifetime prevalence = 35-80%

The cumulative weight lifted by a nurse in one typical 8-hour shift is equivalent to **1.8 tons** (Tuhy-Main, 1997)

LBP Prevalence/Risk and Patient Handling

Work-relatedness of low back pain in nursing personnel: A systematic review

Yassi, A and Lockhart, K
(2013) *Int. J. Occup. and Environ. Health*, 19(3), p. 223-244

- Systematic review of literature
- Considered 987 studies; 89 studies met eligibility criteria
Bradford Hill considerations used (Mix of 21 longitudinal, 36 cross-sectional, 23 biomechanical/ergo, and 9 review studies)
- **Conclusion** – Patient handling confers the highest risk but other duties confound dose-response assessments. Associations were strong, consistent, temporally possible, plausible, coherent, and analogous to other exposure-outcomes. Risk OR 1.2-5.5 depending on LBP defn.

Establishing Causality: Bradford Hill

1. Strength of Association
2. Temporal Association
3. Consistency of Association
4. Specificity of Association
5. Dose-Response Relationship
6. **Biological Plausibility**

Low Back Pain Risk Factor Environment

(NRC/IOM, 2001)

Studies with Biomechanical Implications

Expanded OSHA 300 log as metric for bariatric patient-handling staff injuries

Randall, S. B., Pories, W. J., Pearson, A., Drake, D.J.
(2009) *Surg Obes Relat Dis*, 5(4), p. 463-468

- Patients with **BMI > 35** = **< 10% of patients**
- Handling patients with BMI > 35 associated with:
 - Turning and Repositioning patient implicated in:
 - 31% of cases
 - 29.8% injuries
 - 27.9 % lost time
 - 37.2% restricted time
 - Usually performed using biomechanics and NOT equipment

Biomechanics is More than Strength

The Ohio State University
BIODYNAMICS
LABORATORIES

Intervertebral Disc

- The primary source of low back pain is suspected to be the disc (Nachemson, 1976; Videman and Battie, 1996; An, 2004)
- Noxious stimulation of the disc produces symptoms of low back pain
- Annular tears and reduced disc height are associated with low back pain (Videman et. al., 2003)
- Mechanical load can be the stimulus for pain (Marras, 2008)
- Disc problems are very common in those reporting LBP (Cheung, et al., 2009)

The Ohio State University
BIODYNAMICS
LABORATORIES

How Cumulative Trauma Develops in the Spine

Vertebral Endplate

The Ohio State University
BIODYNAMICS
LABORATORIES

How Cumulative Trauma Develops in the Spine

How Cumulative Trauma Develops in the Spine

Disc Degeneration and Cumulative Trauma

Spine Tolerance Limits

Biomechanical Modeling of the Low Back

Can we assess specific spine tissue loads?

The Development of a Personalized Biomechanical Model

- Unique to the subject/patient (muscle control, imaging, structure characteristics)
- Driven by muscle activities characteristic of pathology
- Show tissue compromise
- Predict tissue breakdown
- Use to understand biochemical triggering
- Can assist in understanding impact of interventions (surgical vs. conservative)

Patient Specific Anatomy

 BIODYNAMICS LABORATORIES

Individual Anatomy Affects Spine Loading

 BIODYNAMICS LABORATORIES

Our Early Patient Lifting Studies

ERGONOMICS, 1999, VOL. 42, NO. 7, 904 - 926

A comprehensive analysis of low-back disorder risk and spinal loading during the transferring and repositioning of patients using different techniques

W. S. MARRAS*, K. G. DAVIS, B. C. KIRKING and P. K. BERTSCHE
Biodynamics Laboratory, The Ohio State University, 1971 Neil Avenue, 210 Baker Systems, Columbus OH 43210, USA

Keywords: Patient handling; Spinal loads; Biomechanics; LBD.

Although patient handlers suffer from low-back injuries at an alarming rate worldwide, there has been limited research quantifying the risk for the specific tasks performed by the patient handlers. The current study used both a comprehensive evaluation system (low-back disorder risk model) and theoretical model to evaluate the low-back loading risk associated with transfers of 17 participants (12 experienced and five inexperienced) performing several patient handling tasks. Eight of the participants were female and nine were male. Several patient transfers were evaluated as well as repositioning of the patient in bed.

 BIODYNAMICS LABORATORIES

Patient Lifting Origins/ Destinations

- Bed to/from wheelchair with arms
- Bed to/from wheelchair with one arm removed
- Portable commode chair to/from hospital chair

 BIODYNAMICS LABORATORIES

Transfer Techniques

- 1 person hug
- 2 person hook and toss
- 2 person gait belt

 BIODYNAMICS LABORATORIES

Repositioning Techniques

 BIODYNAMICS LABORATORIES

Patient Handling Musculoskeletal Disorder Rate Changes (#MSDs/employee-hours worked)*200,000

Type of Intervention	n	Baseline median (Range)	Follow-up median (Range)	Rate Ratio (FU/BL MSD rate)
Reduce Bending	16	9.89 (0.0-42.65)	6.65 (0.0-59.51)	.66
Zero Lift	44	15.38 (0.0-87.59)	9.25 (0.0-28.27)	.54
Reduce Carrying	8	6.47 (0.0-15.80)	0.33 (0.0-6.70)	.15
Multiple Interventions	32	11.98 (0.0-60.34)	7.78 (0.0-25.94)	.56
All	100	12.32 (0.0-87.59)	6.64 (0.0-59.51)	.52

(Fujishiro, et al. 2005)

BIODYNAMICS LABORATORIES

Patient Handling Change in MSD Rates per Intervention (baseline to follow-up)

Type of Intervention	# Units Decreased or no change	Number of Units Increased	P-value
Reduce Bending	12 (75%)	4 (25%)	0.056
Zero Lift	32 (72.7%)	12 (27.3%)	0.002
Reduce Carrying	7 (87.5%)	1 (12.5%)	0.031
Multiple Interventions	26 (81.3%)	6 (18.7%)	0.001
All	77 (77.0%)	23 (23.0%)	<0.001

(Fujishiro, et al. 2005)

Our Previous Studies

- Risk associated with one- or two- caregiver patient lifting
 - Conclusion - There is no safe way to lift patient manually!
 - Suggestion - Employ Patient Lifting assistance device
- **Intervention Effectiveness (prospective observation of 100 units)**
 - Conclusion – Often observe significant reduction in risk
 - Not all interventions created equally!
 - 23% of zero lift interventions had increased reporting

Lifting Transformed into Pushing and Pulling

Pushing and Pulling

Pushing/Maneuvering Patients

Ergonomics
Vol. 52, No. 3, March 2009, 384-397

Taylor & Francis
Taylor & Francis Group

Lumbar spine forces during manoeuvring of ceiling-based and floor-based patient transfer devices
W.S. Maitra*, G.G. Knapik and S. Ferguson
Biodynamics Laboratory, The Ohio State University, 1971 Neil Ave., Columbus, Ohio 43210, USA

Patient handling continues to represent a high risk task for low back pain (LBP) among health caregivers. Previous studies indicated that manual transfer of patients impose unacceptable loads on the spine even when two caregivers perform the transfer. Patient lift devices are considered a potential intervention; however, few biomechanical studies have examined the potential for ceiling-based and floor-based patient handling devices. This study analyzed the 3-D spine forces imposed upon the lumbar spine when 10 subjects manipulated ceiling-based and floor-based patient lift devices through various patient handling tasks and maneuvering tasks that would be considered safe, whereas floor-based patient handling had the potential to increase anterior/posterior shear forces to unacceptable levels during patient handling manoeuvres. Given these findings, ceiling-based lifts are preferable to floor-based patient transfer systems.

Keywords: low back pain; low back disorders; patient transfer; patient handling; patient lifting; safe patient handling; spine biomechanics

Patient Lift Devices

Ceiling lift

Likorall 243 ES
(230 Kg capacity)

Floor based lift

Liko Viking L
(250 Kg capacity)

Experimental Conditions

- Lift system
 - Ceiling based
 - Floor based – large wheel vs. small wheel
 - Large wheels (5 inch diameter rear; 4 inch diameter front)
 - Small wheels (3 inch diameter rear; 2 inch diameter front)
- Floor Surface
 - Hard Floor
 - Carpet

The Ohio State University
BIODYNAMICS
LABORATORIES

Patients

- Patient weight**
 - 125 lb (56.8 Kg)
 - 160 lb (72.7 Kg)
 - 360 lb (163 Kg)

The Ohio State University
BIODYNAMICS
LABORATORIES

Course Path and Required Control

The Ohio State University
BIODYNAMICS
LABORATORIES

Course Path and Required Control

The Ohio State University
BIODYNAMICS
LABORATORIES

Ceiling Lift Trial and Analysis

The Ohio State University
BIODYNAMICS
LABORATORIES

Floor Based Lift used on Carpet

The Ohio State University
BIODYNAMICS
LABORATORIES

Conclusions

- There is no safe way to lift a patient manually (loads are too great for body mechanics to make a difference)
- There is surveillance evidence that interventions can help control risk
- Lifting devices can help but the degree of control required greatly influences risk
- Use ceiling lifts if at all possible
- When using floor mounted lifts –
 - Use extreme caution when turning and controlling patient within the bathroom (this is where the risk occurs)
 - Use extreme caution when using these systems on carpet
 - Don't use small wheels with floor based systems!

BIODYNAMICS LABORATORIES

Thank You!

Website: www.biodynamics.osu.edu
e-mail: marras.1@osu.edu

BIODYNAMICS LABORATORIES