A Full Information Maximum Likelihood (FilML') Approach to Compensating for Missing Data in Matrix Sampling

Paul Biemer

RTI International and
University of North Carolina

Content of this talk

- Simple matrix sampling for two questionnaires
- Presents basic idea of FIML for matrix sampling
- Some results based upon simulation
- Implications for future work

Advantages and Disadvantages of FIML

Advantages

- More efficient that MI
- Easier to use that MI
- Uses full information
- Unlike case-wise deletion, for example
- Useful for simulating various matrix sampling scenarios

Disadvantage

- Requires special software such as Mplus or Latent Gold
- Modeling complexity

Simple Matrix Sampling Design

Sample 1 ($n_{1}=.5 n$)
Core + Module A

Notation for Analyzing C, A and B

Subtable for $\mathbf{C} \times \mathrm{A}$

	$\mathbf{C}=1$	$\mathbf{C = 2}$
$\mathrm{~A}=1$	$n_{\mathrm{a}=1, \mathrm{c}=1}$	$n_{\mathrm{a}=1, \mathrm{c}=2}$
$\mathrm{~A}=2$	$n_{\mathrm{a}=2, \mathrm{c}=1}$	$n_{\mathrm{a}=2, \mathrm{c}=2}$

Subtable for $C \times B$

	$\mathbf{C}=1$	$\mathbf{C}=\mathbf{2}$
$\mathrm{B}=1$	$n_{\mathrm{b}=1, \mathrm{c}=1}$	$n_{\mathrm{b}=1, \mathrm{c}=2}$
$\mathrm{~B}=2$	$n_{\mathrm{b}=2, \mathrm{c}=1}$	$n_{\mathrm{b}=2, \mathrm{c}=2}$

Define Response Indicators

Notation:

- R, S are response indicators for A, B, respectively
- E.g., $R S=12$ denotes table CA, $R S=21$ denotes CB
- Note: $R S=11$ (CAB) and $R S=22(\mathrm{C})$ are not observed
- Use log-linear path models specify relationships among C, A, B, R, S
- Both ignorable and nonignorable response mechanisms can be estimated
- Matrix sampling is primarily concerned with ignorable (MAR) response mechanisms

Likelihood Assuming Multinomial Sampling

- Incomplete data likelihood

$$
\begin{aligned}
\log \mathfrak{L}_{(\pi)} & =\sum_{c a b} n_{c a b} \log \pi_{c a b} \pi_{11 \mid c a b}+\sum_{c a} n_{c a} \log \sum_{b} \pi_{c a b} \pi_{12 \mid c a b} \\
& +\sum_{c b} n_{a b d} \log \sum_{a} \pi_{c a b} \pi_{2 \mid c a b}+\sum_{c} n_{c} \log \sum_{a b} \pi_{c a b} \pi_{22 \mid c a b}
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{c a b}=\operatorname{Pr}(C=c, A=a, B=a) \\
& \pi_{r s c a b}=\operatorname{Pr}(R=r, S=s \mid C=c, A=a, B=a)
\end{aligned}
$$

Possible Logit Models for R and S

MCAR:

MAR:

$$
\pi_{r s c a b}=\pi_{r s}=\frac{\exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}\right)}{\sum_{r s} \exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}\right)}
$$

$$
\begin{gathered}
\pi_{r s c a b}=\frac{\exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}+u_{r c}^{R C}+u_{r b}^{R B}+u_{s c}^{S C}+u_{s a}^{S A}\right)}{\sum_{r s} \exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}+u_{r c}^{R C}+u_{r b}^{R B}+u_{s c}^{S C}+u_{s a}^{S A}\right)} \\
\pi_{r s k a b}=\frac{\exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}+u_{r c}^{R C}+u_{s c}^{S C}\right)}{\sum_{r s} \exp \left(u_{r}^{R}+u_{s}^{S}+u_{r s}^{R S}+u_{r c}^{R C}+u_{s c}^{S c}\right)}
\end{gathered}
$$

How is the precision of estimates affected by matrix sampling?

- When C, A and B are uncorrelated?
- When C and A or C and B are correlated?
- When C and A or C and B or A and B are correlated?

Illustration of a Simulation to Investigate the Effect of Correlation on Precision

- FIML employed to estimate the proportion positives for A (or B); i.e. $\pi_{a=1}$ or $\pi_{b=1}$
- Simulation setup

$$
\pi_{c=1}=\pi_{a=1}=\pi_{b=1}=0.5
$$

- Simulation 1:
$\operatorname{Corr}(\mathrm{C}, \mathrm{A})=\operatorname{Corr}(\mathrm{C}, \mathrm{B})$ varied between 0.0 and 1.0
- Simulation 2:
$\operatorname{Corr}(\mathrm{C}, \mathrm{A})=\operatorname{Corr}(\mathrm{C}, \mathrm{B})=\operatorname{Corr}(\mathrm{A}, \mathrm{B})$ varied between 0.0 and 1.0
- $\mathrm{n}=5000$ and $\mathrm{n}=1000$

Standard Error of Proportion A (or B) as a Function of Corr(C,A) = Corr(C,B)

Standard Error of Proportion A (or B) as a Function of Corr(C,A) = Corr(C,B)

Remarks

- FIML is a viable approach for point, interval and model estimation in matrix sampling
- FIML standard errors equivalent to MI standard errors with $m=\infty$
- S.E's can be improved by incorporating correlates within and across disjoint subsamples
- FIML with response indicators makes this quite straightforward

