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Note. Genotyping costs from multiple sources. Sequencing costs from 
NIH (genome.gov/sequencingcosts).
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Gene Discovery
Test of null that 
the (regression-
adjusted) 
means of 
individuals with 
different 
genotypes are 
the same.

Important considerations:
• Determining which J variants to test for association.
• Minimizing problems caused by stratification biases.
• Multiple-hypotheses adjustment.
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Candidate-Gene Study (J small)

• Specify ex ante hypotheses about small set of 
SNPs based on believed biological function.

• Typical significance threshold: 0.05/ J. 
• Eminently reasonable, and has worked when 

hypotheses are direct. (e.g., APOE and Alzheimer’s)

• But most reported associations with behavioral 
traits have failed to replicate.
– Weak hypotheses (except for highly proximal behaviors).
– Low power (in the small samples typically used).
– Population stratification.
– Uncorrected multiple hypothesis testing / publication bias.





Replication Results





Genome-Wide Association 
Study (GWAS)  (J large)

• Atheoretical testing of all SNPs measured 
using modern technologies (~0.5-2.5M).

• Set significance threshold  = 5  10-8 (since 
≈1M independent SNPs in genome).

• Some advantages of GWAS:
– Hypothesis-free design makes the need to correct for 

multiple hypothesis testing transparent.
– Genome-wide data makes it easier to minimize 

stratification biases.
– Conditional on genome-wide significance, almost certain 

to be true.



Table 1. Sample Size and Number of Genome-Wide Significant Associations

Years of Education Height Body-mass index

Ref. N #Hits Ref. N #Hits Ref. N #Hits

[1] 9,538 0 [6] 11,536 1 [12] 11,536 0

[2] 7,500 0 [7] 15,821 12 [13] 123,865 19

[3] 101,069 1 [8] 16,482 20 [14] 339,224 97

[4] 126,069 4 [9] 30,968 27

[5] 293,723 74 [10] 183,727 180

[6] 405,072 162 [11] 253,288 697

Note. Relationship between discovery sample size and the number of 
independent loci (“hits”) identified at genome-wide significance.



Note. The distribution of effect sizes (R2) for the 74 hits reported by Okbay
et al. (2016) for educational attainment. 



Note. The distribution of effect sizes (years per allele) for the 74 hits 
reported by Okbay et al. (2016) for educational attainment. 



Note. In UKB sample (N = 111,349), 72/74 SNPs have predicted sign, 
52 replicate at P < 0.05 and 7 at P < 5×10-8.



Note. Effects (R2) benchmarked against the top 74 genome-wide significant 
hits reported for height and body mass index.
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Polygenic Scores
• Can use GWAS estimates to predict i’s outcome from 

J measured genetic variants: 

௜ ௜௝ ௝

௃

௝ୀଵ

௜௝ is individual i’s genotype (0,1,2) at variant j and ௝
is our preferred estimate of variant j’s effect. 

• Predictive power: ଶ
௜ ௜ . 

• As , better estimates of βj, and
ଶ

௜ ௜ → ଶ
௜ ௜



Predicting BMI and Education

Note. Polygenic scores estimated using LD Pred (Vilhjalmsson et al. 2015). 
All analyses in European-ancestry subjects in HRS. 



Predicting Height

Note. Polygenic scores estimated using LD Pred (Vilhjalmsson et al. 2015). 
All analyses in European-ancestry subjects in HRS. 



Note. Projections based Daetwyler (2008).

Future Polygenic Scores
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1. Small-N candidate gene studies of behavioral traits 
have a weak replication track record.

2. Steady increase in genetic associations identified in 
GWA studies as . Strong replication record.

3. Despite the fact that GWAS has had some 
successes, much of the heritability is “missing”.

4. As larger N available to estimate weights for 
polygenic scores, their predictive power rises.

Four Stylized Facts



“A typical human behavioral trait is associated with very 
many genetic variants, each of which accounts for a 
very small percentage of the behavioral variability.”

(Chabris et al. Curr Dir in Psych Sci, 2014)

Fourth “Law” as a Unifying Principle



Calibration: Power Analysis
• Either there is a true association or not.
• If associated, ଶ Else, ଶ

• Sample size for 80% power: 39,240.
• Now suppose significant association at α = .05.
• What should we conclude?



N
Power

100
0.052

10K
0.294

100K
0.993

Prior 0.1% 0.1% 0.6% 2%
1% 1% 6% 17%
5% 5.2% 24% 51%
10% 10.4% 39% 69%

Given significant at α = .05, posterior probability of true association 
with effect size R2 = 0.02%.

Bayesian Analysis of a Candidate-Gene Study
(based on Wacholder et al., 2004; Ioannidis, 2005; Benjamin et al., 2012)

Bayes’ Rule: P ݁ݑݎܶ ܵ݅݃ ൌ ௣௢௪௘௥ൈ௣௥௜௢௥
௣௢௪௘௥ൈ௣௥௜௢௥ା଴.଴ହൈሺଵି௣௥௜௢௥ሻ

.
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Suppose R2 = 0.02% and significant at α = .05:
1. How often will estimate have the right sign?
2. How exaggerated is the magnitude of the estimate? 

Candidate-Gene Study: Design Calculations 
(based on Gelman and Carlin 2014)

N 100 1K 10K 100K

Power 0.052 0.073 0.294 0.993

P ݊݃݅ܵ	ݐ݄ܴ݃݅ ܲ ൏ 0.05 66% 89% 99.9% 100%

E ݏܾܽ ߚ/መߚ ܲ ൏ 0.05 16.7 5.3 1.8 1.0
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N
Power

100
6.6 ൈ 10ି଼

10K
2.7 ൈ 10ିହ

100K
0.157

Prior 0.1% 0.13% 36% 100%
1% 1.3% 85% 100%
5% 7% 97% 100%
10% 13% 98% 100%

Given significant at α = 5  10-8, posterior probability of true 
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• Small-N candidate gene studies of behavioral 
traits have a weak replication track record.

• Steady increase in genetic associations identified in 
GWA studies as . Strong replication record.

• Despite the fact that GWAS has had some 
successes, much of the heritability is “missing”.

• As larger N available to estimate weights for 
polygenic scores, their predictive power rises.

Fourth “Law” as a Unifying Principle
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Concluding Remarks
1. Substantial progress in years ahead.

• UKB, Precision Medicine and similar initiatives -> 
N 1M samples available for hundreds of traits.

2. Could advance research in a number of ways:
• Elucidating biological mechanisms 
• Non-genetic empirical research

Control variables
Instrumental variables

• Better foundation for G×E and prediction
E.g., older individuals with at-risk cognitive health.
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