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Note. Genotyping costs from multiple sources. Sequencing costs from
NIH (genome.gov/sequencingcosts).
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Important considerations:
* Determining which J variants to test for association.
« Minimizing problems caused by stratification biases.
* Multiple-hypotheses adjustment.
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Candidate-Gene Study (J small)

Specify ex ante hypotheses about small set of
SNPs based on believed biological function.

Typical significance threshold: 0.05/ J.

Eminently reasonable, and has worked when
hypotheses are direct. (e.g., APOE and Alzheimer’s)

But most reported associations with behavioral
traits have failed to replicate.

— Weak hypotheses (except for highly proximal behaviors).
— Low power (in the small samples typically used).

— Population stratification.

— Uncorrected multiple hypothesis testing / publication bias.
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Replication Results
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BRIEF COMMUNICATION

Editorial Policy on Candidate Gene Association and Candidate
Gene-by-Environment Interaction Studies of Complex Traits

John K. Hewitt

The literature on candidate gene associations is full of
reports that have not stood up to rigorous replication. This
is the case both for straightforward main effects and for
candidate gene-by-environment interactions (Duncan and
Keller 2011). As a result, the psychiatric and behavior
genetics literature has become confusing and it now seems
likely that many of the published findings of the last decade
are wrong or misleading and have not contributed to real
advances in knowledge. The reasons for this are complex,
but include the likelihood that effect sizes of individual
polymorphisms are small, that studies have therefore been
underpowered, and that multiple hypotheses and methods
of analysis have been explored; these conditions will result
in an unacceptably high proportion of false findings
(Toannidis 2005).



Genome-Wide Association
Study (GWAS) (J large)

» Atheoretical testing of all SNPs measured
using modern technologies (~0.5-2.5M).

« Set significance threshold « =5 x 108 (since
=1M independent SNPs in genome).

« Some advantages of GWAS:

— Hypothesis-free design makes the need to correct for
multiple hypothesis testing transparent.

— Genome-wide data makes it easier to minimize
stratification biases.

— Conditional on genome-wide significance, almost certain
to be true.



Table 1. Sample Size and Number of Genome-Wide Significant Associations

Years of Education Height Body-mass index
Ref. N #Hits Ref. N #Hits Ref. N #Hits
[1] 9,538 0 [6] 11,536 1 [12] 11,536 0
[2] 7,500 0 [7] 15,821 12 [13] 123,865 19
[3] 101,069 1 [8] 16,482 20 [14] 339,224 97
[4] 126,069 4 [9] 30,968 27
[5] 293,723 74 [10] 183,727 180
[6] 405,072 162 [11] 253,288 697

Note. Relationship between discovery sample size and the number of
independent loci (“hits”) identified at genome-wide significance.
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Note. The distribution of effect sizes (R?) for the 74 hits reported by Okbay
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reported by Okbay et al. (2016) for educational attainment.
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Polygenic Scores

« Can use GWAS estimates to predict i's outcome from
J measured genetic variants:
J

Ji = Z xij,éj
j=1
o x;; is individual i's genotype (0,1,2) at variant j and Bj
Is our preferred estimate of variant j’s effect.

* Predictive power: #2(g;, ;).
« As N — oo, better estimates of 8, and

7';2 (g\l’ yi)_)rz (gi' yl)



Predicting and Education
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Note. Polygenic scores estimated using LD Pred (Vilhjalmsson et al. 2015).
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Predicting Height
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Future Polygenic Scores
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Four Stylized Facts

. Small-N candidate gene studies of behavioral traits
have a weak replication track record.

. Steady increase in genetic associations identified in
GWA studies as N T. Strong replication record.

. Despite the fact that GWAS has had some
successes, much of the heritability is “missing”.

. As larger N available to estimate weights for
polygenic scores, their predictive power rises.



Fourth "Law” as a Unifying Principle

“A typical human behavioral trait is associated with very
many genetic variants, each of which accounts for a
very small percentage of the behavioral variability.”

(Chabris et al. Curr Dir in Psych Sci, 2014)



Calibration: Power Analysis

Either there is a true association or not.

If associated, R? ~ 0.02%. Else, R? =~ 0%.
Sample size for 80% power: 39,240.

Now suppose significant association at o = .05.
What should we conclude?



Bayesian Analysis of a Candidate-Gene Study

(based on Wacholder et al., 2004; Ioannidis, 2005; Benjamin et al., 2012)

Given significant at a = .05, posterior probability of true association
with effect size R? = 0.02%.

N 100 10K 100K
Power 0.052 0.294 0.993
Prior 0.1% 0.1% 0.6% 2%
1% 1% 6% 17%
5% 5.2% 24% 51%
10% 10.4% 39% 69%
power Xprior

Bayes’ Rule: P(True|Sig) =

powerXprior+0.05X(1—prior)
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Candidate-Gene Study: Design Calculations

(based on Gelman and Carlin 2014)

Suppose R? = 0.02% and significant at o = .05:

1. How often will estimate have the right sign?

2. How exaggerated is the magnitude of the estimate?

N
Power

P(Right Sign|P < 0.05)

E(abs(B/B)|P < 0.05)

100

0.052

66%

16.7

1K

0.073

89%

5.3

10K

0.294

99.9%

1.8

100K

0.993

100%

1.0
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Bayesian Analysis of a GWAS

(based on Wacholder et al., 2004; Ioannidis, 2005; Benjamin et al., 2012)

Given significant at a = 5 x 1078, posterior probability of true
association with effect size R? = 0.02%.

N 100 10K 100K
Power 6.6 X 1078 2.7 X107 0.157
Prior 0.1% 0.13% 36% 100%
1% 1.3% 85% 100%
5% 7% 97% 100%
10% 13% 98% 100%

power Xprior

Bayes’ Rule: P(True|Sig) =

powerXprior+5x10~8 (1—-prior)
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« Steady increase in genetic associations identified
in GWA studies as N 1. Strong replication record.
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Despite the fact that GWAS has had some
successes, much of the heritability is “missing”.



Fourth "Law as a Unifying Principle

* As larger N available to estimate weights for
polygenic scores, their predictive power rises.



Concluding Remarks

1. Substantial progress in years ahead.

« UKB, Precision Medicine and similar initiatives ->
N=1M samples available for hundreds of traits.

2. Could advance research in a number of ways:
« Elucidating biological mechanisms

* Non-genetic empirical research

Control variables
Instrumental variables

« Better foundation for G X E and prediction
E.g., older individuals with at-risk cognitive health.
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