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1. Introduction

The age of big data has revolutionized the social and behavioral sciences, making it possible to draw
conclusions from relevant information in ways heretofore impossible. This makes it possible to address
challenges from many problems facing our society, in particular national security, where issues of
individual and group behavior and social and economic forces play a central role in evolving threats and
potential responses. However, in order to benefit from the availability of big data to bring social and
behavioral phenomena to bear on national security, we face a variety of research challenges. This paper
explores a selection of such challenges.

2. Algorithmic Decision Theory'

The theory of decision-making is heavily based in methods developed in the social sciences. Today's
decision-makers have available remarkable new technologies, huge amounts of information, and ability to
share information at unprecedented speeds and quantities. These tools and resources should lead to better
decisions. However, traditional social-science-based tools of decision theory are often inadequate in this
new “big data” environment.

New tools of decision theory bring with them daunting new problems and the need to apply them to
issues arising in national security presents complex new challenges. Among the issues are: The massive
amounts of data available are often incomplete, unreliable, distributed, or uncertain;
interoperating/distributed decision-makers and decision-making devices need to be coordinated; many
sources of data need to be fused into a good decision. When faced with such issues, there are few efficient
algorithms available to support decisions. There is a long tradition of algorithmic methods in logistics and
planning. But algorithms to automate, speed up and improve real-time decision-making are much less
common. Algorithms for decision support, especially algorithms that can approximate good analytic
solutions, are needed. Such algorithms should improve ability of decision-makers (human or automated).
These considerations have given rise to the field called Algorithmic Decision Theory (ADT) ([5]).

To give one ADT example: With the increasing amount of data and increasing speed with which
decisions need to be made, it is often necessary to make decisions depending on feedback from earlier
ones before having access to all relevant data. Such sequential decisions arise e.g., in numerous inspection
processes, where the outcome of one inspection determines which inspections to do next. Sequential
decision-making needs new models and algorithms as traditional methods do not scale. For instance, in
inspections of containers at a port, a decision-maker has to decide how to inspect them, which to subject
to further inspection and which to pass through. Stroud and Saeger [33] developed a decision logic in
which containers are classified using a Boolean decision function (BDF). Different binary tree
representations for a BDF have different associated inspection costs and one seeks an efficient decision
tree representation. While such problems are generally computationally challenging, one can hope for
efficient solutions in certain cases. For relevant work on container inspection see [4,19,23,24].

ADT is also relevant to protection of critical infrastructure. Stable and reliable operation of the electric
power grid is an example. Decisions about design, operation, and repair of grid systems must be made
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rapidly using massive amounts of data available about the state of the system. ADT challenges in
management and control of the grid include scale of the problem, intrinsic uncertainties in monitoring its
“state," and the potential to cause cascading blackouts. Research is needed to develop algorithmic
solutions leading to real-time predictions and decisions for controlling and securing the grid. Issues
include: fusing multiple data streams into forms suitable for action and human interpretation; quantifying
and balancing risk from acting on insufficient information vs. delaying action to get more data;
determining when is it advisable to “break” the grid and isolate instability to avoid cascading failures.

3. Game Theory’

Game theory, widely developed in Economics, is a well-established tool for studying adversarial
behavior. Milind Tambe and colleagues have done extensive work using Stackelberg games, leading to a
range of deployed applications: scheduling checkpoints and canine patrols at LAX; deploying air
marshals on international flights; scheduling randomized Coast Guard patrols near ports; deploying CG
boats to protect ferries; scheduling multi-operation patrolling (fare evasion, counter-terrorism and crime)
on LA area metro trains; preventing illegal, unreported, and unregulated fishing; etc. See e.g., [1,28].

Classical work in game theory provides rich equilibrium concepts. However, to allow game theory
concepts to scale up to large, complex systems, computational and representational insights are required.
The emerging field of computational game theory addresses such issues [22]. We need to develop new
methods for dealing with huge problems, e.g., methods for computing the solution to a game with a huge
and possibly changing number of players.

The study of repeated games is a challenging area of research [13,27]. A player might use early rounds to
learn about an opponent’s strategy or defenses or preferences; e.g., a terrorist might spend early “rounds”
observing. Repeated games allow players to modify their strategies based on results of earlier rounds, a
common approach of today’s transnational criminal organizations.

Another interesting area of research is behavioral game theory. Its methods challenge basic notions of
rationality [6]. Experimental work in behavioral economics has repeatedly shown that human subjects
will frequently deviate from traditionally assumed notions of self-interest and greed [17]. Moreover, they
seem to do so in ways that are predictable, repeatable, and amenable to mathematical modeling and
analysis. Concepts such as altruism, revenge, and envy have been quantified and fruitfully measured
[7,11].

4. Economic Epidemiology’

The 2014/15 Ebola outbreak in West Africa reminded us that the world is ill-prepared for a severe disease
epidemic or similar global sustained public emergency. Because of locally severe disease risks, global
interconnectedness through transportation, increasing migration, tourism and trade, infectious diseases
emerge and re-emerge more frequently; spread greater distances; pass more easily between humans and
animals; and evolve into new and more virulent strains. Analysis of the Ebola outbreak provided valuable
insights into the role of funeral practices, hospitals, social contact, and population mobility. Social and
behavioral science challenges abound here.

The application of economics to the study of infectious disease has taken on a new meaning with the
development of a sub-discipline called “Economic Epidemiology” [19,35]. Economic epidemiology deals
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with the mathematical conceptualization of the interplay among economics, human behavior, and disease
ecology to improve our understanding of the emergence, persistence, and spread of infectious agents
[2,3]. To correctly evaluate health interventions and public policies, models of disease spread must
incorporate both group and individual behaviors (e.g., will people comply with directions).

Economic Epidemiology issues of importance are developing models to understand the cost and impact of
alternative disease treatment strategies, the allocation of resources between prevention and treatment, the
development of incentives to achieve desired individual and group behavior.

5. Radicalization

An increasing challenge in homeland security is the radicalization of individuals outside terrorist groups.
There is interesting work on modeling the spread of ideologies analogously to the spread of disease [9,
31]. Among the things to understand to build such models are characteristics of people vulnerable to
spread of violent ideologies, structural and social characteristics of systems enabling such spread, and the
impact of terrorist group extreme behavior on the vulnerable population [32]. A great deal of work on
radicalization, aided by modern data science, has been done by sociologists and social psychologists
[21,36].

Galem and Javarone [15] suggest borrowing from the field of sociophysics [14]: physics-inspired models
study a large spectrum of social behaviors including opinion dynamics [34], crowd behavior [8], criminal
activities [12], cultural dynamics [16], and spread of radicalization [15,26].

6. Responses to Disasters®

Models of disaster response behavior generally assume a fixed social landscape with passive bystanders
and rational actors who comply with authorities, whether disasters are natural or man-made. This
assumption may depend on effective communication by authorities and media. Past examples suggest that
episodes of mass panic or hysteria are rare and localized, while actions based on perceived self-interest
(evacuation, queries from the worried-well, antibiotic stockpiling) are widespread. Acts of spontaneous
altruism and mutual aid, as well as criminal opportunism and civil disruption, also occur. Models are
needed to understand how changes in social behavior under stress affect success of interventions.

Social media play an increasingly important role in allowing authorities to gain situational awareness in
disasters. [37,38] have studied how to determine when an “event” is occurring and how it develops by
following the Twitter stream from the 2011 Japanese Earthquake and Tsunami and 2010 Haitian
Earthquake, discovering how to quickly summarize the evolution of keywords and facets and distribution
of users. They learned “topic signatures” indicating when an event of given type occurs and monitored the
pattern as an event unfolds. This and other work led to the discovery that people follow typical sequences
when communicating in emergency situations. Such work involves large amounts of data. For example, a
study of Hurricane Sandy [38] analyzed 6.5 million geo-tagged Twitter posts.

Resilience is another topic that should have gotten its own section. Community resilience under natural
disasters is critical. Anecdotal evidence suggests that the spike in social media complaints/emergency
calls lasts for a shorter time once community training (improved resilience) is in place.

4 This section depends heavily on [25]



In disaster science, social responses that need to be studied and made precise include movement;
compliance (quarantine, resistance, trust); rumor; herd mentality; role of differences in geography
or social group; behavior of first responders; individual altruism.

7. Randomization and National Security

After the 2015 Paris attacks, security professionals put increased emphasis on making decision-making
more difficult for terrorists, and specifically on randomization. Randomization is intended to confuse the
adversary, make them work harder to understand defensive tactics, and make attacks more expensive and
risky. In some cases, e.g., when secondary inspection resources are limited, randomization can provide
increased security.

The vulnerability of stadiums and arenas to attacks was underscored by the 2015 and 2017 attacks on the
Stade de France and the Manchester Arena. Randomization has been described as a “best practice” for a
variety of aspects of stadium security [10]. For example, patron screening can include random selection
for more (or less) rigorous inspection; security officers can be deployed using randomized schedules;
employees can be randomly chosen for background re-checks.

There are a variety of research challenges arising from randomization. For example, how to: evaluate the
effectiveness of randomization; find simple randomization designs for selecting patrons for various types
of screening; design implementation procedures that minimize the possibility of being accused of
profiling.

Insider threats are a challenge for infrastructure protection. Routine background rechecks for all
employees can be costly, so randomly selecting some employees for recheck is an attractive alternative.
But would random rechecks be acceptable to unions? What percentage of employees should be chosen
each time period? What incentives can be designed for employees to self-report issues before being
randomly discovered?

8. Information Sharing Environments

The 9/11 Commission report emphasized information sharing, leading to research on formal “information
sharing environments” (ISE’s) [18]. To be successful, an ISE must include agreed-upon and rigorously
defined technological components, e.g., interoperability. However, it must also address human elements
that often block effective sharing of information.

Some research questions here are’: What processes best identify and resolve conflicts within an ISE?
What cultural impediments keep stakeholders from implementing an ISE? What stakeholder
organizational commitments are required for success? What privacy and safeguarding processes are
needed? What governance policies make stakeholders feel represented?

A fundamental purpose of an ISE involves collecting, analyzing, and disseminating data across
jurisdictional and disciplinary boundaries. While some issues of data stewardship are technical,
others stem from defining policies and practices concerning data quality, costs of data collection,
and privacy protection. Best practices for such policies and practices need to be developed, keeping
human factors at the forefront.

> These research questions derive from ideas in [18]



References

1. An, B., et al., “PROTECT — A deployed game theoretic system for strategic security allocation for the United
States Coast Guard,” A1 Magazine, 4 (2012) 96-110.

2. Barrett, S., “Eradication versus control: The economics of global infectious disease policies," Bull. World Health
Organ., 82 (2004), 683-688.

3. Bauch, C.T., Earn, D.J., “Vaccination and the theory of games," Proc. Natl. Acad. Sci. US4, 101 (2004), 13391-
13394.

4. Boros, E., Fedzhora, L., Kantor, P.B., Saeger, K., Stroud, P., “Large scale LP model for finding optimal container
inspection strategies," Naval Research Logistics, 56 (2009) 404-420.

5. Brafman, R.I., Roberts, F.S., and Tsoukias, A. (Eds.), Algorithmic Decision Theory, Proc. Second Intl. Conf. ADT
2011, Lecture Notes in Computer Science book series (LNCS, volume 6992), Springer, 2011.

6. Camerer, C.F., Behavioral Game Theory, Princeton University Press, 2003.

7. Camerer, C.F., Ho, T.H., and Chong, K., “Models of thinking, learning and teaching in games," American Econ.
Review Papers and Proceedings, 93 (2003), 192-195.

8. Castellano C, Fortunato S, Loreto V., “Statistical physics of social dynamics,” Rev. Mod. Phys., 81 (2009) 591-
646.
9. Castillo-Chavez, C., Song, B., “Models for the transmission dynamics of fanatic behaviors,” in: H.T. Banks, C.

Castillo-Chavez (Eds.), Bioterrorism: Mathematical Modeling Applications in Homeland Security, SIAM Frontiers
in Applied Mathematics, vol. 28, SIAM, Philadelphia, 2003, pp. 155-172.

10. CCICADA Center, Best Practices in Anti-terrorism Security for Sports and Entertainment Venues: Resource
Guide, CCICADA Center, Rutgers University, July 2013, available at
https://www.safetyact.gov/externalRes/refdoc/CCICADA%20BPATS.pdf

11. Costa Gomes, M., Crawford, V. Broseta, B., “Experimental studies of strategic sophistication and cognition in
normal-form games," Econometrica, 69 (2001), 1193-1235.

12. D’Orsogna M, Perc M., “Statistical physics of crime: A review,” Phys. Life Rev. 12 (2015) 1-21.
pmid:25468514

13. Fudenberg, D., Tirole, J., Game Theory, MIT Press, 1991.

14. Galam, S. “Sociophysics: A review of Galam models,” International Journal of Modern Physics C,. 19 (2008)
409-440.

15. Galam, S., Javarone, M.A., “Modeling radicalization phenomena in heterogeneous populations,” PLoS ONE
11 (2016): e0155407. https://doi.org/10.1371/journal.pone.0155407

16. Gracia-Lazaro, C., Quijandria, F., Hernandez, L., Floria, L.M., Moreno, Y., “Co-evolutionary network approach
to cultural dynamics controlled by intolerance,” Phys. Rev. E., 84 (2011) 067101.

17. Harstad, R.M., “Dominant strategy adoption, efficiency, and bidder's experience with pricing rules,"
Experimental Economics, 3 (1990), 261-280.

18. 1JIS Institute, Information Sharing and Safeguarding (IS&S) Playbook, Version 2, 1JIS Institute, Ashburn, VA,
October 2016, http://www.standardscoordination.org/sites/default/files/docs/ISS Environment Playbook.pdf

19. Kantor, P., Boros, E., “Deceptive detection methods for effective security with inadequate budgets: The testing
power,” Risk Analysis, 30 (2010), 663-673.

20. Klein, E., Laxminarayan, R., Smith, D.L., Gilligan, C.A., “Economic incentives and mathematical models of
diseases," Environment and Development Economics, 12 (2007), 707-732.

21. Kruglanski, A.W., Gelfand, M.J., Belanger, J.J., Sheveland, A., Hetiarachchi, M., Gunaratna, R.., “The
psychology of radicalization and deradicalization: How significance quest impacts violent extremism” Advances in
Political Psychology, 35 (2014).

22. Linial, N., “Game-theoretic aspects of computing,” in R.J. Aumann and S. Hart (eds.), Handbook of Game
Theory with Economic Applications, 11, chapter 38, (1994), 1340-1395.



23.Madigan, D., Mittal, S., Roberts, F.S., “Sequential decision making algorithms for port of entry inspection:
Overcoming computational challenges," in G. Muresan, T. Altiok, B. Melamed, and D. Zeng (eds.), Proceedings of
IEEE International Conference on Intelligence and Security Informatics (ISI-2007), IEEE Press, Piscataway, NJ,
May 2007, 1-7.

24. Madigan, D., Mittal, S., Roberts, F.S., “Efficient sequential decision making algorithms for container inspection
operations,” Naval Research Logistics, 58 (2011), 637-654.

25. McKenzie, E., Roberts, F., Modeling Social Responses to Bioterrorism Involving Infectious Agents, Report,
DIMACS Center, Rutgers University, July 2003.

26. McMillon, D., Simon, C.P., Morenoff, J., “Modeling the underlying dynamics of the spread of crime,” PloS
ONE, 9 (2014); ¢88923. pmid:24694545

27. Myerson, R., Game Theory, Harvard University Press, Cambridge, MA, 1991.

28. Pita, J., et al., “Deployed ARMOR protection: The application of a game theoretic model for security at the Los
Angeles International Airport,” in Seventh International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2008.

29. Roberts, F.S., “Computer science and decision theory,” Annals of Operations Research, 163 (2008), 209-253.

30. Roberts, F.S., “Greedy algorithms in economic epidemiology,” in A. Gumel and S. Lenhart (eds.), Modeling
Paradigms and Analysis of Disease Transmission Models, American Mathematical Society, Providence, RI, Vol. 75
(2010), 249-268.

31. Santonja, F.J., Tarazona, A.C., Villanueva, R.J., “A mathematical model of the pressure of an extreme ideology
on a society,” Computers and Mathematics with Applications, 56 (2008) 836-846.

32. Shepherd, L.O.V, “Suicide terrorism: Modeling group dynamics and individual behavior,” in J.I. Victoroff (ed.),
Tangled Roots: Social and Psychological Factors in the Genesis of Terrorism, 2006, pp. 410-430.

33. Stroud, P.D., Saeger, K.J., “Enumeration of increasing Boolean expressions and alternative digraph
implementations for diagnostic applications," in H. Chu, J. Ferrer, T. Nguyen, and Y. Yu (eds), Proceedings Volume
1V, Computer, Communication and Control Technologies: 1, International Institute of Informatics and Systematics,
Orlando, FL, 2003, 328-333.

34. Sznajd-Weron, K., Sznajd, J., “Opinion evolution in closed community,” International Journal of Modern
Physics C., 11 (2000) 1157.

35. Tanaka, M.M., Kumm, J., Feldman, M.W., “Coevolution of pathogens and cultural practices: A new look at
behavioral heterogeneity in epidemics," Theoretical Population Biology, 62 (2002), 111-119.

36. Thompson R.L., “Radicalization and the use of social media,” Journal of Strategic Security, 4 (2011) 167—190.

37. Tyshchuk, Y., Li, H., Ji, H., Wallace, W.A., “Evolution of communities on Twitter and the role of their leaders
during emergencies,” in R. Missaoui and I. Sarr (Eds.), Social Network Analysis - Community Detection and
Evolution, Springer, New York, 2014.

38. Wang, H., Hovy, E., Dredze, M., “The Hurricane Sandy Twitter corpus,” Proceedings AAAI Workshop: WWW
and Pubic Health Intelligence, 2015.



