

Organizing in Teams

Leslie A. DeChurch

*Professor of Communication & Psychology
Northwestern*

Teams assemble *from networks*,
to *form networks of teams*, whose
success can be predicted by
looking at the *networks within and*
between teams.

The United States Intelligence Community

***“17 separate
organizations
unite”***

From Teams in Organizations to *Organizing in Teams*¹... (*teaming!*²)

Teams in Organizations

- Two or more people
- Clear boundary
- Shared goal
- Interdependence is fixed
- Appointed

Organizing in Teams

- *Many more* people
- Fluid boundary
- Shared purpose
- Interdependence constantly changing
- Self-organizing

“purposive collaborative interaction among a set of individuals”

Teaming in the Intelligence Community (IC)

- Analysts are embedded in organizations, but must adaptively configure and reconfigure teams within and across organizations as new threats are identified ^{1,2}
- Four themes: **Assemble, Manage, Detect, Disrupt**
- The scientific problem:
Teaming from a social network perspective

IC Example: Iraq WMD Report

- “A **groupthink dynamic** led analysts... to interpret ambiguous evidence as conclusively indicative of a WMD program.”
- “Groupthink ... so pervasive that formalized mechanisms established to **challenge assumptions and groupthink were not utilized.**”
- The IC needs to: “provide more rigorous analysis that avoids unwarranted assumptions and **encourages diverse and independent perspectives.**”

All emphasis added

IC Example: Post 9-11

- “**Information Sharing**: Bureaucratic structures and complex policies *impeded, even prevented, sharing of important intelligence* among the IC and other government agencies, particularly law enforcement organizations. This highlighted the need for these communities to transform from a culture of “need-to-know” to one of a “**responsibility-to-provide**.”

All emphasis added

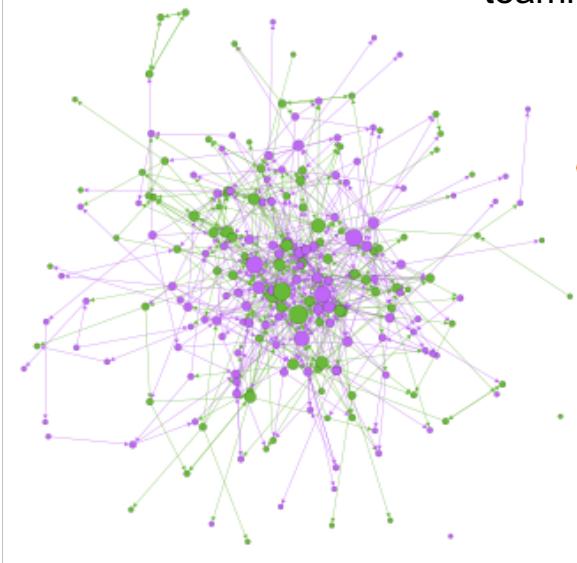
Teams assemble from networks,
to form networks of teams, whose
success can be predicted by
looking at the networks within and
between teams.

Teams Assemble from Networks

Team Assembly

- **Self-forming teams avoid diversity¹**
 - Networks often homophilous²
 - Cost to socializing newcomers³
- **Teams tend to assemble in certain optimal sizes⁴**
- **Teams tend to assemble with previous collaborators⁴**

Team Composition

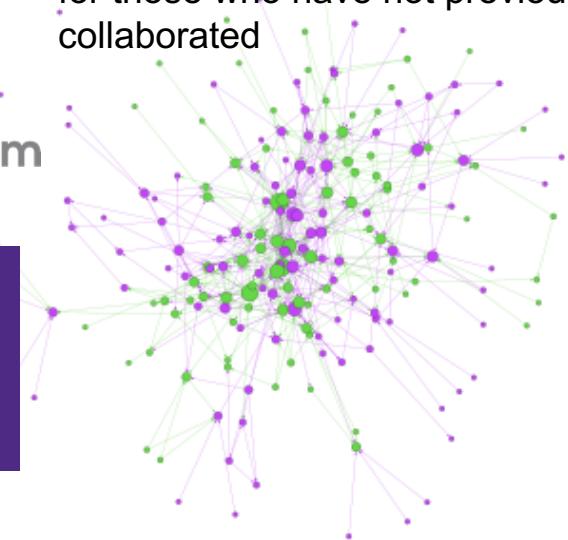

- **Membership diversity benefits performance⁴**
 - Diverse expertise
 - Balance newcomers and incumbents
- **Teams of up to 25 people are optimal⁵**

Sources: ¹Lungeanu, Huang, & Contractor (2014); ²Ruef, Aldrich, & Carter (2003); ³Hinds et al. (2000);

⁴Guimera et al. (2005); ⁵Katzenbach & Smith (2015)

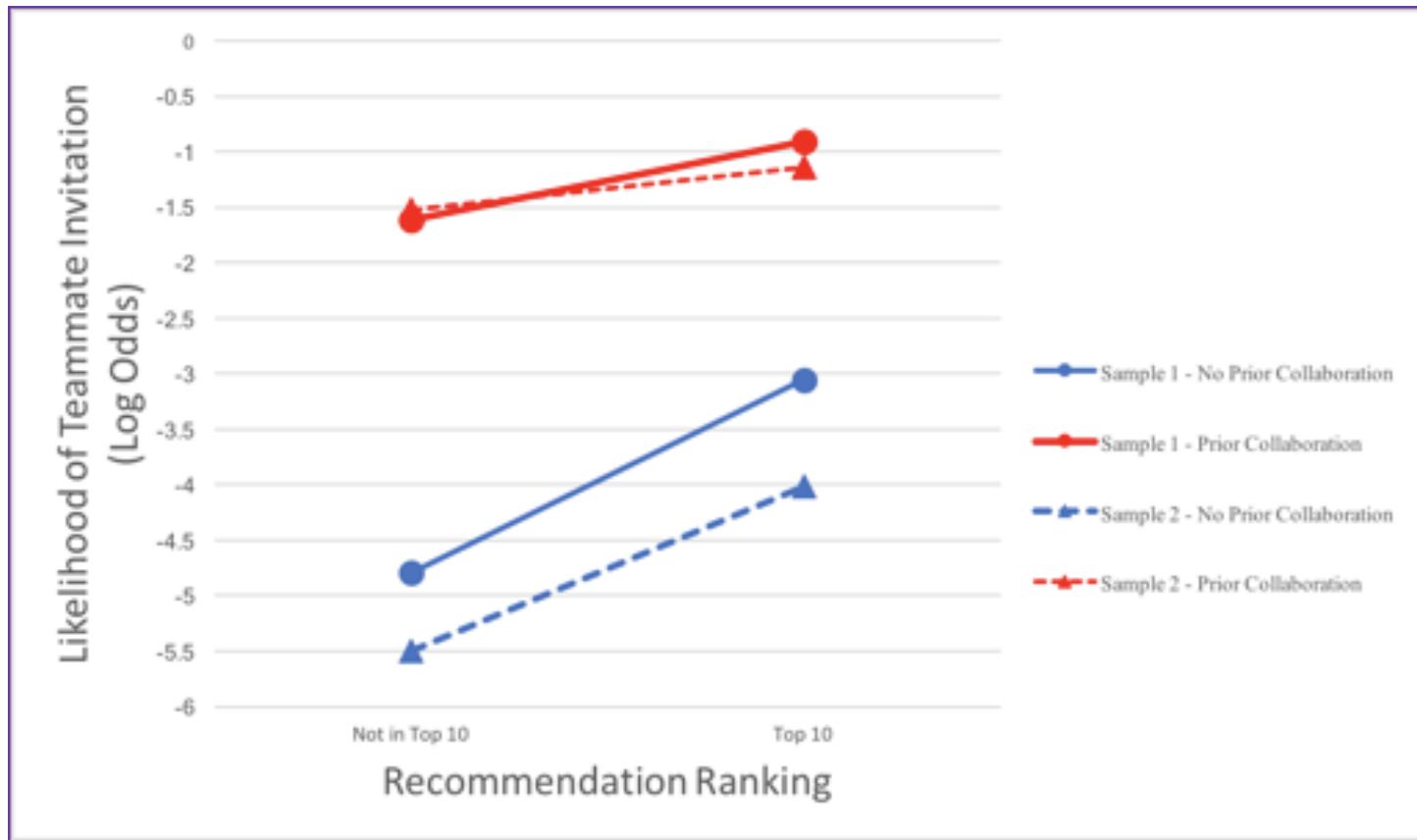
Intervention #1: A Teammate Recommender System

1. People are 3-4x as likely to team up with **prior collaborators**


577 invitations in Sample 1 colored by university (Purple = U1, Green = U2)

2. People are 1.5-2x as likely to team up with an **algorithm “recommended” teammate**

“Invite to collaborate” network


3. Algorithmic teammate recommendations significantly improve the chances of teaming up for those who have not previously collaborated

472 invitations in Sample 2 colored by university (Purple = U1, Green = U2)

Note. Exponential random graph models (ERGM) run on the teammate invitation networks of 2 samples; Endogenous controls: Activity, reciprocity, popularity, transitivity, closure; Exogenous controls: Individual's competence, gender homophily, disciplinary homophily

Intervention #1 (Continued): People Were More Likely to Team Up with a Stranger if They Were Recommended

Note. Exponential random graph models (ERGM) run on the teammate invitation networks of 2 samples; Significant interaction represented by multiplicative term “prior collaborator x appeared in top 10 recommended teammates.” Interaction term was statistically significant ($p < .05$) in both samples.

**Teams assemble from networks,
to form networks of teams, whose
success can be predicted by
looking at the networks within and
between teams.**

Teams Form Networks of Teams

Multiteam Systems¹

- A network comprised of two or more teams each of which pursues team and system goals
- Between-team ties are critical for multiteam system success ^{2,3}
- Leaders need to focus on both within- and between- team activity ^{4,5}

Bridging Social Capital ⁶

- Informal ties connecting teams to other groups predict performance⁷
- Diverse & weak boundary spanning networks predict team creativity ⁸

Sources: ¹Zaccaro, Marks, & DeChurch (2012); ²Marks et al. (2005); ³Davison et al., (2012); ⁴DeChurch & Marks (2006); ⁵DeChurch et al. (2011); ⁶Han (2017); ⁷Oh et al. (2004); ⁸Smith-Perry & Shalley (2014)

Teams assemble *from networks*,
to *form networks of teams*, whose
success can be predicted by
looking at the *networks within and*
between teams.

Outcomes Driven by Networks in Teams

Team Interaction Networks ¹

- Decentralized information sharing networks predict team decision quality²
- Similar cognitive networks among members predict team performance³

Leadership Networks ⁴

- Formal leadership: Teams with central leaders more effective ⁵
- Informal leadership: Teams with dense influence ties more effective ⁶

Sources: ¹Crawford & LePine (2013); ²Mesmer-Magnus & DeChurch (2009); ³DeChurch & Mesmer-Magnus (2010); ⁴Carter, DeChurch, Braun, & Contractor (2015); ⁵Balkundi, Kilduff, & Harrison (2011); ⁶Balkundi & Harrison (2006)

Intervention #2:

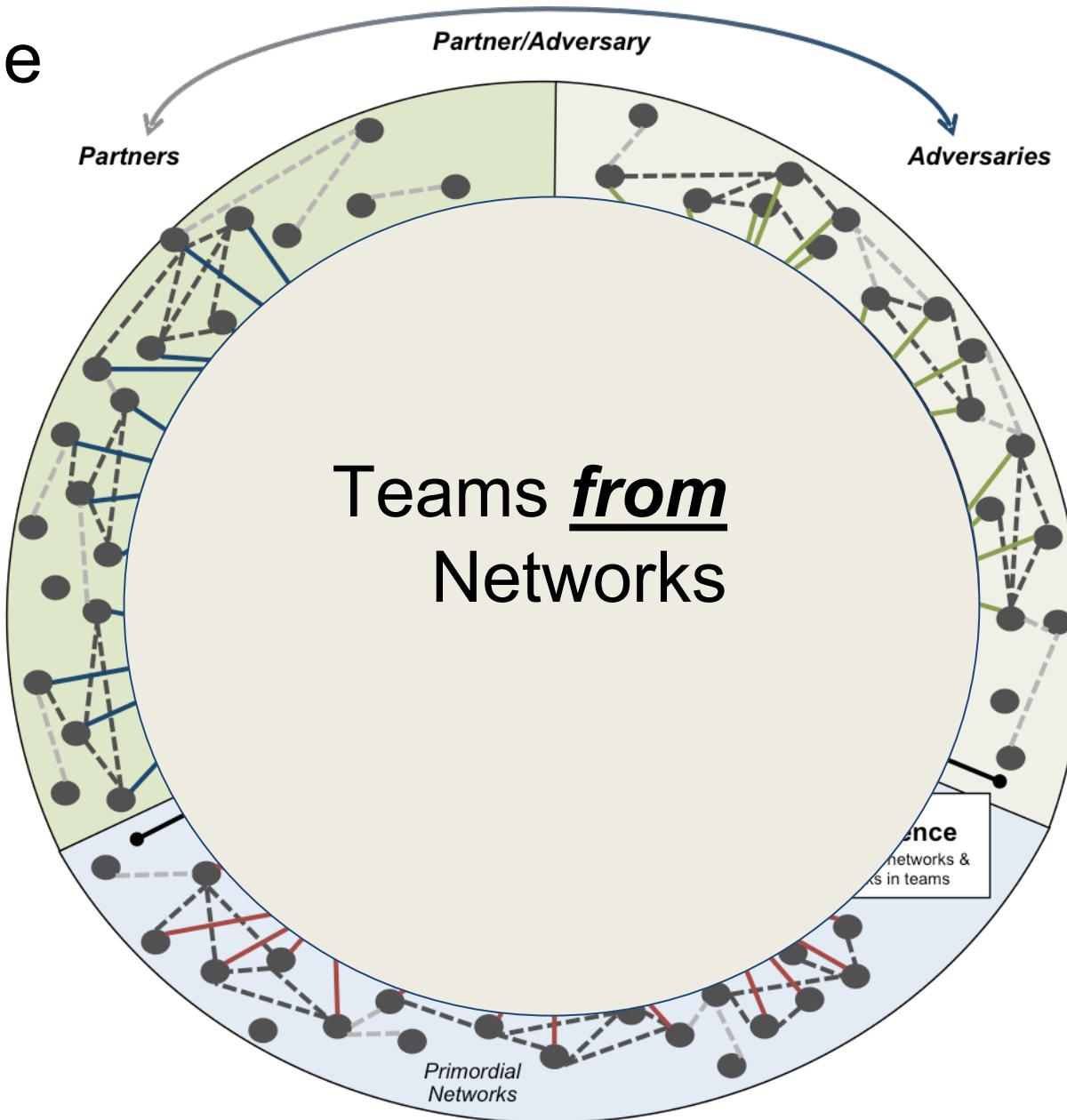
Normative Messages Improve Team Information Sharing

1. Information sharing has a low base rate
2. Normative messages improve the **evenness of information sharing networks** & foster **group social exchange** patterns
3. Normative messages that work: (a) **demonstrability** framing, (b) **cooperative norms**, (c) **structured discussion**

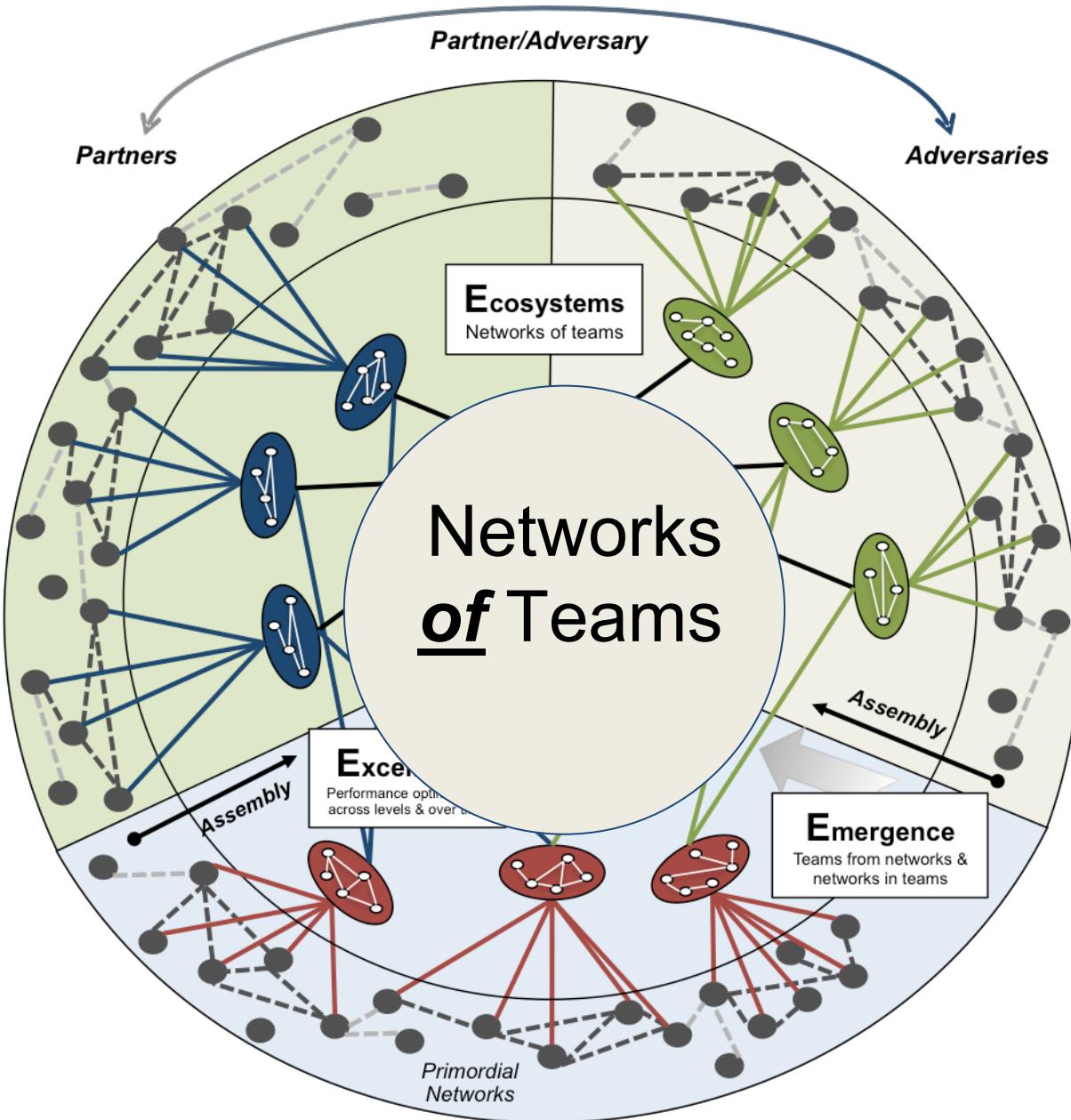
Information sharing networks among 185 people in 38 teams while exposed to 4 normative messages (counterbalanced)

Network Statistics	Control	Demonstrability	Cooperativeness	Structure
No. of Edges	77	115	93	129
No. of Isolates	105	73	85	63

Note. The sample size is 38 teams and 185 individuals. Network statistics are counts of edges and isolates, which correspond to the number of times a post was extended by another team member, and the number of people whose posts were not extended by others, respectively.


Four Themes to Advance Future Intelligence Analysis

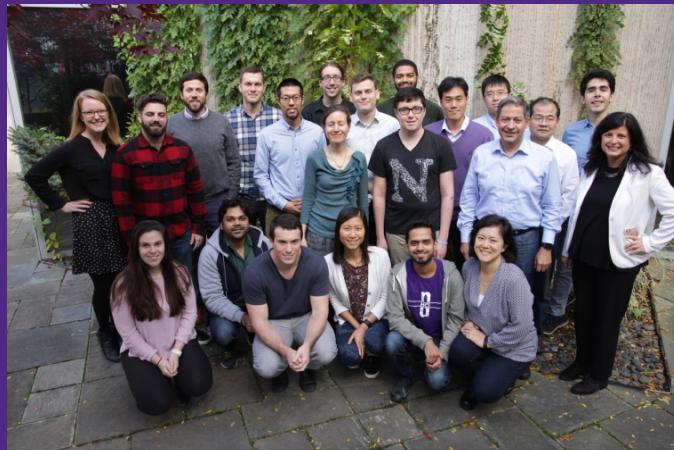
- How do we assemble agile analyst teams?
- How do we manage these teams?
- How do we detect adversarial teams?
- Once detected, how do we disrupt adversarial teams?


Assemble

Detect

Manage

Disrupt



Teams assemble *from networks*,
to *form networks of teams*, whose
success can be predicted by
looking at the *networks within and*
between teams.

Research Priorities

- Support mechanisms needed to enable effective (1) team assembly practices, and (2) team self-regulatory processes
- Research can meet this need by:
 - Revealing networks that optimize analyst teams
 - Validating network interventions
 - Developing technologies that provide team support mechanisms to analysts

Thank You

dechurch@northwestern.edu
www.atlas.northwestern.edu

References

Balkundi, P., & Harrison, D. (2006). Ties, leaders, and time in teams: Strong inference about network structure's effects on team viability and performance. *The Academy of Management Journal*, 49(1), 49-68.

Balkundi, P., Kilduff, M., & Harrison, D. A. (2011). Centrality and charisma: comparing how leader networks and attributions affect team performance. *Journal of Applied Psychology*, 96(6), 1209.

Carter, D. R., DeChurch, L. A., Braun, M. T., & Contractor, N. S. (2015). Social network approaches to leadership: An integrative conceptual review. *Journal of Applied Psychology*, 100(3), 597-622.

Chen, T. R., Shore, D. B., Zaccaro, S. J., Dalal, R. S., Tetrck, L. E., & Gorab, A. K. (2014). An organizational psychology perspective to examining computer security incident response teams. *IEEE Security & Privacy*, 12(5), 61-67.

Crawford, E. R., & Lepine, J. A. (2013). A configural theory of team processes: Accounting for the structure of taskwork and teamwork. *Academy of Management Review*, 38(1), 32-48.

Davison, R. B., Hollenbeck, J. R., Barnes, C. M., Sleesman, D. J., & Ilgen, D. R. (2012). Coordinated action in multiteam systems. *Journal of Applied Psychology*, 97(4), 808.

DeChurch, L. A., Burke, C. S., Shuffler, M. L., Lyons, R., Doty, D., & Salas, E. (2011). A historiometric analysis of leadership in mission critical multiteam environments. *The Leadership Quarterly*, 22(1), 152-169.

DeChurch, L. A., Carter, D. R., Asencio, R., Wax, A., Seely, P. W., Dalrymple, K., Vaughn, S., Jones, B., Plummer, G., Mesmer-Magnus, J. R. (2017). In Ones, Anderson, Viswesvaran, Sinangil. (Eds.). From team in organizations to organizing in teams. *Handbook of Industrial, Work & Organizational Psychology* (2nd ed., vol. 2). US: Sage.

DeChurch, L. A., & Marks, M. A. (2006). Leadership in multiteam systems. *Journal of Applied Psychology*, 91(2), 311.

DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of effective teamwork: a meta-analysis.

References (cont.)

Edmondson, A. (2012). *Teaming: How organizations learn, innovate and compete in the knowledge economy*. Indianapolis: Jossey-Bass

Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. *Science*, 308(5722), 697-702.

Han, J. (2017). Team-bonding and team-bridging social capital: conceptualization and implications. *Team Performance Management: An International Journal*.

Hinds, P. J., Carley, K. M., Krackhardt, D., & Wholey, D. (2000). Choosing work group members: Balancing similarity, competence, and familiarity. *Organizational behavior and human decision processes*, 81(2), 226-251.

Katzenbach, J. R., & Smith, D. K. (2015). *The wisdom of teams: Creating the high-performance organization*. Harvard Business Review Press.

Lungenanu, A., Huang, Y., & Contractor, N. S. (2014). Understanding the assembly of interdisciplinary teams and its impact on performance. *Journal of informetrics*, 8(1), 59-70.

Marks, M. A., DeChurch, L. A., Mathieu, J. E., Panzer, F. J., & Alonso, A. (2005). Teamwork in multiteam systems. *Journal of Applied Psychology*, 90(5), 964.

Mathieu, J. E., Marks, M. A., & Zaccaro, S. J. (2001). Multi-team systems. *International handbook of work and organizational psychology*, 2, 289-313.

Mesmer-Magnus, J. R., & DeChurch, L. A. (2009). Information sharing and team performance: a meta-analysis.

Oh, H., Chung, M. H., & Labianca, G. (2004). Group social capital and group effectiveness: The role of informal socializing ties. *Academy of management journal*, 47(6), 860-875.

Perry-Smith, J. E., & Shalley, C. E. (2014). A social composition view of team creativity: The role of member nationality-heterogeneous ties outside of the team. *Organization Science*, 25(5), 1434-1452.

References (cont.)

Rosenbach & Peritz (2009). [Confrontation or Collaboration? Congress and the Intelligence Community](#). Belfer Center for Science and International Affairs, Harvard Kennedy School. <http://belfercenter.ksg.harvard.edu/files/IC-book-finalasof12JUNE.pdf>

Ruef, M., Aldrich, H. E., & Carter, N. M. (2003). The structure of founding teams: Homophily, strong ties, and isolation among US entrepreneurs. *American sociological review*, 195-222.

Steinke, J., Bolunmez, B., Fletcher, L., Wang, V., Tomassetti, A. J., Repchick, K. M., ... & Tetrick, L. E. (2015). Improving Cybersecurity Incident Response Team Effectiveness Using Teams-Based Research. *IEEE Security & Privacy*, 13(4), 20-29.

Zaccaro, S. J., Marks, M. A., & DeChurch, L. (Eds.). (2012). *Multiteam systems: An organization form for dynamic and complex environments*. Routledge.