

Differential Impacts of Developmental Math by Level of Academic Need

Angela Boatman

Assistant Professor of Public Policy and Higher Education

Peabody College of Education and Human Development, Vanderbilt University

Citations

- Students assigned to developmental courses often have no better and sometimes worse outcomes than their peers placed into college-level courses.
 - Boatman & Long 2018; Calcagno & Long 2008; Clotfelter, Ladd, Muschkin, & Vigdor 2015; Dadgar 2012; Hodara 2015; Martorell & McFarlin 2011; Melguizo et al. 2016; Scott-Clayton & Rodriquez 2015; Valentine, Konstantopoulos, & Goldrick-Rab 2017; Xu 2016; Xu & Dadgar 2018
- Null effects may be masking heterogeneous impacts across student groups.
 - Bahr 2012, Boatman & Long 2018, Dadgar 2012
- More variance for passing math classes is explained in attempting each level than in passing that level.
 - Fong, Melguizo, & Prather 2015
- Performance gaps between online and face-to-face courses differ across types of students
 - Xu & Jaggars 2014
- Evaluation of pre-college developmental math program, SAILS
 - Kane et al. 2018

Data Sources across Studies in Tennessee

The Tennessee Higher Education Commission (THEC) and the Tennessee Board of Regents (TBR) collect enrollment information and transcript data, including courses taken and grades, for each student in every term of active enrollment at a public college in the state. This includes information on demographic characteristics, test scores, and degree completion from a Tennessee public college. High school data is collected by the Tennessee Department of Education (TDOE). Selected attributes about public high schools come from the Common Core of Data (CCD), a program of the U.S. Department of Education's National Center for Education Statistics (NCES). Postsecondary institution-level characteristics are from the Integrated Postsecondary Education Data System (IPEDS) from NCES.

References

Bahr, P. R. (2012). Deconstructing remediation in the community college: Exploring associations between course-taking patterns, course outcomes, and attrition from the remedial math and remedial writing sequences. *Research in Higher Education*, 53, 661-693.

Boatman, A. & Long, B.T. (2018). Does remediation work for all students?: How the effects of postsecondary remedial and developmental courses vary by level of academic preparation. *Educational Evaluation and Policy Analysis*, 40(1), 29-58.

Calcagno, J. C., & Long, B. T. (2008). *The impact of postsecondary remediation using a regression discontinuity approach: Addressing endogenous sorting and noncompliance* (NBER Working Paper. No. 14194). Cambridge, MA: National Bureau of Economic Research.

Clotfelter, C. T., Ladd, H. F., Muschkin, C., & Vigdor, J. L. (2015). Developmental education in North Carolina community colleges. *Educational Evaluation and Policy Analysis*, 37(3), 354–375.

Dadgar, M. (2012). *Essays on the economics of community college students' academic and labor market success* (Doctoral dissertation) Retrieved from ProQuest Dissertations and Theses.

Fong, K., Melguizo, T., Prather, G. (2015). Increasing success rates in developmental math: The complementary role of individual and institutional characteristics. *Research in Higher Education*, 56, 719–749.

Hodara, M. (2015). The effects of English as a second language courses on language minority community college students. *Educational Evaluation and Policy Analysis*, 37, 2243–2270.

Kane, T., Boatman, A., Kozakowski, W., Bennett, C., Hitch, R., & Weisenfeld, D. (2018). Remedial math goes to high school: An evaluation of the Tennessee SAILS program. Research Report. Cambridge, MA: Center for Education Policy Research, Harvard University.

Martorell, P., & McFarlin, I. (2011). Help or hindrance? The effects of college remediation on academic and labor market outcomes. *The Review of Economics and Statistics*, 93(2), 436–54.

Melguizo, T., Bos, J.M., Ngo, F., Mills, N., & Prather, G. (2016). Using a regression discontinuity design to estimate the impact of placement decisions in developmental math. *Research in Higher Education*, 57, 123–151.

Scott-Clayton, J., & Rodriguez, O. (2015). Development, discouragement, or diversion? New evidence on the effects of college remediation. *Education Finance and Policy*, 10, 4–45.

Valentine, J. C., Konstantopoulos, S., & Goldrick-Rab, S. (2017). What happens to students placed into developmental education? A meta-analysis of regression discontinuity studies. *Review of Educational Research*, 87, 806–833.

Xu, D. (2016). Assistance or obstacle?: The impact of different levels of English developmental education on underprepared students in community colleges. *Educational Researcher*, 45(9), 496–507.

Xu, D., & Dadgar, M. (2018). How effective are community college remedial math courses for students with the lowest math skills? *Community College Review*, 46(1), 62–81.

Xu, D., & Jaggars, S. S. (2014). Performance gaps between online and face-to-face courses: Differences across types of students and academic subject areas. *The Journal of Higher Education*, 85(5), 633–659.