Everything You Always Wanted to Know About Differential Privacy*

Kobbi Nissim
Department of Computer Science
Georgetown University

Alexandra Wood
Berkman Klein Center for Internet & Society
Harvard University

Challenges and New Approaches for Protecting Privacy in Federal Statistical Programs
National Academies of Sciences, June 6, 2019

(*But Were Afraid to Ask)
Given a dataset with sensitive personal information, how can one compute and release functions of the dataset while protecting individual privacy?
Attacks on SDL Techniques

- Re-identification [Sweeney '00, ...]
 - GIC data, health data, clinical trial data, DNA, pharmacy data, text data, registry information, ...
- Blatant non-privacy [Dinur, Nissim '03], ...
- Auditors [Kenthapadi, Mishra, Nissim '05]
- AOL Debacle '06
- Genome-Wide association studies (GWAS) [Homer et al. '08]
- Netflix award [Narayanan, Shmatikov '09]
- Social networks [Backstrom, Dwork, Kleinberg '11]
- Genetic research studies [Gymrek, McGuire, Golon, Halperin, Erlich '11]
- Microtargeted advertising [Korolova 11]
- Recommendation Systems [Calandrino, Kiltzer, Narayanan, Felten, Shmatikov 11]
- Israeli CBS [Mukatren, Nissim, Salman, Tromer '14]
- Attack on statistical aggregates [Homer et al. '06], [Dwork, Smith, Steinke, Vadhan '15]
- Reconstruction attack on 2010 Census data

Slide idea stolen shamelessly from Or Sheffet
Takeaways from Privacy Failures

Lack of rigor leads to unanticipated privacy failures.

- In setting clear meaningful privacy goals
- In analyzing resilience to future attacks
- In taking auxiliary knowledge into account
- In accounting for privacy loss across multiple releases
- In scrutiny of privacy technology
- In understanding how normative and technical conceptions of privacy interact
Takeaways from Privacy Failures

• Specific findings:
 – Redaction of identifiers is insufficient for protecting privacy.
 – Similarly: aggregation, noise addition*, ...
 – Auxiliary information needs to be taken into account.
 – Regulation and technology only considered a limited scope of privacy failures.
 • New failure modes: whether an individual participated in study, inferences
 – Any useful analysis of personal data must leak some information about individuals.
 – Leakages accumulate with multiple analyses/releases.

* Mathematical facts, not matters of policy
A New Line of Work

Emerging from theoretical computer science (~2003).

 – Rich theory and new privacy concepts.
 – Mathematically provable privacy guarantees.
 – In first stages of implementation and real-world use
 • US Census, Google, Apple, Uber, ...
Yeah, Yeah ...
What is Differential Privacy?
Differential Privacy is ...

... not a specific technique or algorithm!
Differential Privacy is ...

... a definition (i.e., a standard) of privacy*

It expresses a specific desiderata of an analysis:

Any information-related risk to a person should not change significantly as a result of that person’s information being included, or not, in the analysis.

*More precisely, a family of related mathematical definitions: pure DP, approximate DP, concentrated DP, ...
A Privacy Desiderata

Real world:

My ideal world:
A Privacy Desiderata

Real world:

My ideal world:

Should ignore Kobbi’s info

same outcome

Data

Analysis (Computation)

Outcome

Data w/my info removed

Analysis (Computation)

Outcome
A Privacy Desiderata

Real world:

Alex’s ideal world:

Data

Analysis (Computation)

Outcome

Should ignore Kobbi’s info and Alex’s!

Data w/ Alex’s info removed

Analysis (Computation)

Outcome

same outcome
A Privacy Desiderata

Real world:

Sasha’s ideal world:

Should ignore Kobbi’s info and Alex’s! and Sasha’s!
A Privacy Desiderata

Real world:

🤔’s ideal world:

Data

Analysis (Computation)

Outcome

Data w/ ⊹’s info removed

Analysis (Computation)

Outcome

Should ignore Kobbi’s info and Alex’s! and Sasha’s!

... and everybody’s!
Oops!
That did not go so well ...
A More Realistic Privacy Desiderata

Real world:

chema

宀’s ideal world:
Differential Privacy [Dwork McSherry Nissim Smith ‘06]

Real world:

Data \rightarrow \text{Analysis (Computation)} \rightarrow \text{Outcome}

\text{smaller } \epsilon - \text{better privacy}

\epsilon = "similar"

Chance of bad event almost the same in everybody’s ideal and real worlds

웃’s ideal world:

Data w/웃’s info removed \rightarrow \text{Analysis (Computation)} \rightarrow \text{Outcome}
Understanding Differential Privacy

• “Automatic” opt-out: I am protected (almost) as if my info was not used at all.

• I incur limited risk: Contributing my real info can increase the probability I will be denied insurance by at most 1%.
 – When compared with not participating, or contributing fake info.

• These privacy guarantees are provided independent of the methods used by a potential attacker and in presence of arbitrary auxiliary information.

• Future proof: Avoids the “penetrate and patch” cycle.
A Privacy “Budget”

DP provides provable privacy guarantees with respect to the cumulative risk from successive data releases.

- Combination of ϵ-differentially private computations results in differential privacy (with larger ϵ).
- Can manage accumulated privacy loss.
 - Whereas other known definitions of privacy do not measure the cumulative risk from multiple analyses/releases.
 - This is an important feature, not a bug!
 - Consider how ignoring the fuel gauge would not make your car run indefinitely without refueling.
Transparency

DP has the benefit of transparency.

– It is not necessary to maintain secrecy around a differentially private computation or its parameters.
 • Whereas some traditional techniques relied on secret algorithms or parameters.

– Benefits of transparency include:
 • Knowledge accumulation.
 • Scrutiny by the scientific community.
 • Possibility of accounting for DP in statistical inference.
Application for Public Access to Data

DP can be used to provide broad, public access to data or data summaries in a privacy-preserving way.

- Can consider data publications that were otherwise impossible.
 - Whereas traditional techniques would require (more often) to apply controls in addition to de-identification.
Differential Privacy and Concepts from Privacy Law and Policy

- **PII:** Differential privacy can be interpreted as ensuring that using an individual’s data will (essentially) not reveal any *personally identifiable information* that is *specific* to her.

 - Here, *specific* refers to information that cannot be inferred unless the individual’s information is used in the analysis.
Differential Privacy and Concepts from Privacy Law and Policy

✓ PII

• Singling out:

 – This can be formalized mathematically.

 • DP protects against a specific notion of singling out ("predicate singling out").

 • Note: rigorous argument also wrt FERPA’s concept of de-identification.
Differential Privacy and Concepts from Privacy Law and Policy

✓ PII
✓ Singling out

• **Linkage**: Microdata or contingency tables that allow the identification of population uniques **cannot be created** using statistics produced by a differentially private tool.

 – This can be formalized and proved mathematically.
Differential Privacy and Concepts from Privacy Law and Policy

✓ PII
✓ Singling out
✓ Linkage

• Inference: Differential privacy masks the contribution of any single individual, (essentially) making it impossible to infer any information specific to an individual, including whether an individual’s information was used at all.
 – But DP does not protect against all inferences.
Differential Privacy and Concepts from Privacy Law and Policy

✓ PII
✓ Singling out
✓ Linkage
✓ Inference

Differential privacy provides protection (far) beyond “identifiability.”
Example: Reasoning About Risk
Gertrude’s Life Insurance

• Gertrude:
 – Age: 65
 – She has a $100,000 life insurance policy.
 – She is considering participating in a medical study but is concerned it may affect her insurance premium.
Example: Reasoning About Risk
Gertrude’s Life Insurance

• Based on her age and sex, she has a 1% chance of dying next year. Her life insurance premium is set at $1,000.

• Gertrude is a coffee drinker. If the medical study finds that 65-year-old female coffee drinkers have a 2% chance of dying next year, her premium would be set at $2,000.
 – This would be her baseline risk: Her premium would be set at $2,000 even if she were not to participate in the study.

• Can Gertrude’s premium increase beyond her baseline risk?
 – She is worried that the study may reveal more about her, such as that she specifically has a 50% chance of dying next year. This can increase her premium from $2,000 to $50,000!
Example: Reasoning About Risk
Gertrude’s Life Insurance

• Reasoning about Gertrude’s risk

 – Imagine instead the study is performed using differential privacy with $\varepsilon = 0.01$.

 – The insurance company’s estimate of Gertrude's risk of dying in the next year can increase to at most

 $$(1 + \varepsilon) \cdot 2\% = 2.02\%.$$

 – Her premium would increase to at most $2,020. Therefore, Gertrude’s risk would be $\leq $2020 - $2000 = 20.

Example: Reasoning About Risk
Gertrude’s Life Insurance

• Generally, calculating one’s baseline is very complex (if possible at all).
 – In particular, in our example the 2% baseline depends on the potential outcome of the study.
 – The baseline may also depend on many other factors Gertrude does not know.
• However, differential privacy provides simultaneous guarantees for every possible baseline value.
 – The guarantee covers not only changes in Gertrude’s life insurance premiums, but also her health insurance and more.
How is differential privacy achieved?
Differentially Private Computations

Algorithms maintain differential privacy via the introduction of carefully crafted random noise into the computation.

(These CDFs are stylized examples.)
Differentially Private Computations

Algorithms maintain differential privacy via the introduction of carefully crafted random noise into the computation.

(These CDFs are stylized examples.)
Differentially Private Computations

Algorithms maintain differential privacy via the introduction of *carefully crafted* random noise into the computation.

(These CDFs are stylized examples.)
What can be Computed with Differential Privacy?

- **Descriptive statistics:** counts, mean, median, histograms, boxplots, etc.
- **Supervised and unsupervised ML tasks:** classification, regression, clustering, distribution learning, etc.
- **Generation of synthetic data**

Because of noise addition, differentially private algorithms work best when the number of data records is large.
Applications
U.S. Census Bureau

http://onthemap.ces.census.gov

2008 AD
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response

Ülfar Erlingsson
Google, Inc.
ulfar@google.com

Vasyl Pihur
Google, Inc.
vpihur@google.com

Aleksandra Korolova
University of Southern California
korolova@usc.edu

ABSTRACT
Randomized Aggregatable Privacy-Preserving Ordinal Response, or RAPPOR, is a technology for crowdsourcing statistics from end-user client software, anonymously, with strong privacy guarantees. In short, RAPPORs allow the forest of client data to be studied, without permitting the possibility of looking at individual trees. By applying randomized response in a novel manner, RAPPOR provides the mechanisms for such collection as well as for efficient, high-utility analysis of the collected data. In particular, RAPPOR permits statistics to be collected on the population of client-side strings with strong privacy guarantees for each client, and without linkability of their reports.

This paper describes and motivates RAPPOR, details its differential-privacy and utility guarantees, discusses its practical deployment and properties in the face of different attack models, and, finally, gives results of its application to both synthetic and real-world data.

1 Introduction
Crowdsourcing data to make better, more informed decisions is becoming increasingly commonplace. For any such crowdsourcing, privacy-preservation mechanisms should be asked to flip a fair coin, in secret, and answer “Yes” if it comes up heads, but tell the truth otherwise (if the coin comes up tails). Using this procedure, each respondent retains very strong deniability for any “Yes” answers, since such answers are most likely attributable to the coin coming up heads; as a refinement, respondents can also choose the untruthful answer by flipping another coin in secret, and get strong deniability for both “Yes” and “No” answers.

Surveys relying on randomized response enable easy computations of accurate population statistics while preserving the privacy of the individuals. Assuming absolute compliance with the randomization protocol (an assumption that may not hold for human subjects, and can even be non-trivial for algorithmic implementations [28]), it is easy to see that in a case where both “Yes” and “No” answers can be denied (flipping two fair coins), the true number of “Yes” answers can be accurately estimated by \(2(Y - 0.25)\), where \(Y\) is the proportion of “Yes” responses. In expectation, respondents will provide the true answer \(75\%\) of the time, as is easy to see by a case analysis of the two fair coin flips.

Importantly, for one-time collection, the above randomized survey mechanism will protect the privacy of any specific respondent, irrespective of any attacker’s prior knowledge.
APPLE’S ‘DIFFERENTIAL PRIVACY’ IS ABOUT COLLECTING YOUR DATA—BUT NOT YOUR DATA
The Privacy Tools Project is a broad effort to advance a multidisciplinary understanding of data privacy issues and build computational, statistical, legal, and policy tools to help address these issues in a variety of contexts. It is a collaborative effort between Harvard's Center for Research on Computation and
DP in Practice: Challenges
Transitioning to Practice

• A relatively new concept:
 – How to communicate its strengths and limitations?
 – What are the “right” use cases for implementation at this stage?

• Access to data:
 – Via a mechanism; Noise added
 – Limited by the ”privacy budget”
 • Setting the budget is a policy question

• Matching guarantees with privacy law & regulation
Conclusion
Main Takeaways

- **Accumulating failures**: anonymization & traditional SDL techniques
- **Differential privacy**:
 - A standard providing a rigorous framework for developing privacy technologies with provable quantifiable guarantees
 - Rich theoretical work, now transitioning to practice
 - First real-world applications and use
 - Not a panacea; to be combined (wisely!) with other technical and policy tools
Resources
Learning More About Differential Privacy

• [Nissim et al, 2018] *Bridging the gap between computer science and legal approaches to privacy*, Harvard JOLT.
• [Vadhan, 2017] *The Complexity of Differential Privacy*
Projects, Software Tools [Partial List]

[Microsoft Research] PINQ
[UT Austin] Airavat: Security & Privacy for MapReduce
[UC Berkeley] GUPT
[CMU-Cornell-PennState] Integrating Statistical and Computational Approaches to Privacy
[US Census] OnTheMap
[Google] Rappor, TensorFlow Privacy
[UCSD] Integrating Data for Analysis, Anonymization, and Sharing (iDash)
[UPenn] Putting Differential Privacy to Work
[Stanford-Berkeley-Microsoft] Towards Practicing Privacy
[Harvard] Privacy Tools
[Harvard-Georgetown-Buffalo] Computing over Distributed Sensitive Data
Backup Slides
The Privacy Tools Project

Deposit in repository

Sensitive Data Set

DataTags Interview

Sensitive Data Set

Robot Lawyers

Restricted Access Data Set w/DUA

PSI: Differential Privacy

Public Access Statistics

Tools we are working on
The Privacy Tools Project: Robot Lawyers

Automatically generate custom licenses & data-use agreements via logic programming
The Privacy Tools Project: PSI

Statistical summaries and exploratory data analysis with strong privacy guarantees
The Privacy Tools Project: Bridging Defs

Deposit in repository

Argue that differential privacy satisfies legal requirements

*