
Statistical Validation of Complex Computer Models 

Rima Izem, Harvard University1

 

Introduction 
This paper presents an overview of statistical validation of complex computer models. 
Such models—used, for example, to simulate traffic in a street network, a car crash, the 
effect of increasing CO2 on global warming, or the cost-effectiveness of a procedures in 
cancer screening—play important roles in scientific research and policy and decision 
making.  The computer models discussed in this paper are all based on mathematical 
models of the real phenomena of interest, as opposed to, for instance, models (such as 
those based on neural networks) that emulate the behavior of a phenomena without 
explicitly attempting to represent the underlying components.  
 
Validating such models has been emphasized in at least two reports from the National 
Academies: NAS (1991) “Improving Information for Social Policy Decisions -- The Uses 
of Microsimulation Modeling: Volume I, Review and Recommendations” and NAS 
(1998) “Statistics, Testing, and Defense Acquisition: New Approaches and 
Methodological Improvements.”  Validation has also been the focus of a number of 
workshops. One notable example was a “Workshop on Statistical Approaches for the 
Evaluation of Complex Computer Models,” held December 3-4, 1999 in Santa Fe, New 
Mexico as a joint activity of the Committee on Applied and Theoretical Statistics of the 
National Research Council, Los Alamos National Laboratory, and the National Institute 
of Statistical Sciences (NISS).  Another, “Workshop on Foundations for Modeling and 
Simulation (M&S) Verification and Validation (V&V) in the 21st Century”, better known 
as Foundations ’02, was held October 22-24, 2002 in the Kossiakoff Conference and 
Education Center at the Johns Hopkins University Applied Physics Laboratory in Laurel, 
Maryland (USA). 
 
The process of validation was formally defined by the Department of Defense (DoD) and 
slightly modified by the American Institute of Aeronautics and Astronautics (AIAA) as  
 

The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the 
model.  

 
An alternate term, model assessment, was proposed in (Fuentes et al (2003)).  The latter 
term avoids the implication that the validation or assessment is done just once, to 
essentially certify a model’s validity.  Rather, model assessment is seen as part of an 
iterative process to continually improve models, based on an understanding of their 
capabilities and limitations at emulating reality.  An important distinction to make is 

                                                 
1 This white paper was developed in the summer of 2003 while serving a policy internship at the National 
Academies. 
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between the process of validation and the process of verification. Verification was 
defined by the DoD as the process of determining that a model implementation 
accurately represents the developer’s conceptual description of the model and the 
solution to the model. As illustrated in the diagram below (Cafeo and Cavendish, 2001), 
while validation is the process of comparing the computer model and conceptual model 
to reality, verification is the process of checking and debugging the code to make sure it 
reflects the conceptual model accurately.  
 
Diagram from (Cafeo and Cavendish, 2001) 
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The goal of this paper is to give an overview of statistical methods and methodologies 
used or proposed for validation of complex computer models in different disciplines in 
sciences or social sciences. Examples of validation in transportation planning (Sacks et al 
2000) and (Berk et al 2002), engineering, atmospheric sciences and social sciences will 
be used to illustrate the goal of validation and the methodologies. 
 
In Section 1, computer models will be categorized in different types. General ideas about 
validation will be discussed in Section 2. In Section 3 statistical validation methods are 
discussed and a mathematical framework is introduced. Finally, some examples will be 
presented in Section 4.   
 
1. Computer model types 
The computer models considered in this paper are based on conceptual models that 
approximate reality and which are in turn represented by mathematical equations.   For 
example, the spot welding example described in Section 4 (Bayarri et al (2002)) is based 
on a physical theoretical model which combines thermal, electrical and mechanical 
physics, and the CORridor SIMulation (CORSIM) (Sacks et al (2000)) microsimulation 
model is based on a stochastic model of traffic flow. 
 
In a keynote address at the “Workshop on Statistical Approaches for the Evaluation of 
Complex Computer Models” (Berk et al 2002), Dr. William Press, the Deputy Director 
for Science and Technology at Los Alamos National Laboratories, proposed a taxonomy 
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and examples of computer models. Dr Press classified computer models in several types 
depending on the following aspects:  

1. The conceptual model on which the computer model is based. The conceptual 
model is called “accurate” when the physics of the phenomena is known and 
deterministic, “statistically accurate” when the phenomenon is statistical, or 
“phenomenologically accurate” when the model captures qualitatively identifiable 
phenomena. 

2. Type of input for the computer model. It is “accurate” when the input is a fixed 
value, “statistically accurate” when the input is a random variable. 

3. Type of phenomena to be modeled. It is deterministic physical or emergent 
physical. An emergent physical phenomenon is neither explicitly represented in 
the system’s elementary components or their couplings nor in the system’s initial 
and boundary conditions. 

 
The validation process will depend on the type of computer model. Dr. Press gave 
examples and comments on validation for some model types as summarized in the table 
below. 
Computer model types Examples Comments on Validation 
1. “Accurate” models of 
deterministic physical 
phenomena with “accurate” 
input conditions. 
2. “Accurate” models of 
deterministic physical 
phenomena with “statistically 
accurate” input conditions. 
 

Static civil 
engineering, models 
of bridges and dams, 
weapons code 

-  Three sources of modeling 
errors: error from conceptual 
model, error in the computer 
model (truncation vs round-off 
error), error from randomness 
of input for type 2.  
- Compare model run to data 
using appropriate norm.  

3. “Statistically accurate” 
models of nondeterministic 
physical phenomena. 

Turbulent fluid 
phenomena and 
climate models 

-  Need for better simulation 
methods to take into account 
uncertainty in the model. 
-  Metric for model-to model 
and data-model evaluation 

4. “Accurate” or “statistically 
accurate” models of emergent 
physical phenomena. 
 

Statistical mechanics, 
smooth particle 
hydrodynamics and 
traffic flow modeling 

 

5. “Phenomenologically 
accurate” models of emergent 
physical phenomena. 
6. “Phenomenologically 
interesting” models. 
 

Turbulent 
intermittency, traffic 
jams and epidemics. 

- Computer model generally 
inaccurate but still useful, 
could be used for training. 
-  How to map “fields of data” 
into “phenomena” or “events” 
and the behavior of these 
phenomena. 

7. “Video games” as models. 
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A formal mathematical definition of input, output and parameters of a model is necessary 
to define the statistical validation framework, and this will be introduced in Section 3.2. 
 
2. Validation 
In addition to verification of the model code and checking that outputs of the model are 
considered reasonable by specialists in the field, validation of the model with real data is 
a necessary step for checking the accuracy. To validate a computer model, i.e., determine 
the degree to which the computer model is an accurate representation of the real world, 
results of computer model experiments need to be compared to real data. The comparison 
could be between the output of the model and past data, as for example evaluating a 
weather simulation model by comparing its output to past weather data (Covey et al. 
(2003)) or evaluating a microsimulation model for cancer treatment by comparing its 
output for patients with certain profiles to actual medical survey data for similar cohorts. 
The comparison could also be between the output of the model and the realizations of 
designed experiments or surveys, as for example in evaluating the predictions from car 
crash models by comparing them to the outcomes of designed car crash experiments. 
Such validation by data is called external validation in the social sciences.  
 
Although several replicates are necessary to account for the variability2 in the data from 
the phenomena of interest, the cost of collecting and processing the data often limits the 
number of available replicates of the phenomena. For example, collecting and processing 
data to validate CORSIM required manual recording of traffic and video coverage, and it 
was very costly.  Performing real car crash experiments with dummies in order to 
validate a car crash model is costly, and collecting new data or retrieving archived data 
sets from past history to validate a social or economic model is also costly.   
 
When an appropriate set of data is collected, comparison with the computer model will 
involve analyzing the error or bias, i.e., the difference between the model prediction or 
forecast and the field data.  The variability in the data and the randomness and sources of 
error in the model are not always well understood. As discussed in the internal research 
report of General Motors (Cafeo and Cavendish (2001)): 
 

A major problem with the use of math models and simulations in support of 
product and process design is that the models are only the abstractions of 
reality, and the insights and understanding they can provide is limited. It is 
important that the model builders and code users understand the limitations of 
these models used to support product and process design. It is unfortunate 
however, that almost all computational models used to support engineering 
design are used deterministically, that is they are seldom exercised to explicitly 
account for error and uncertainty, and they do not provide boundaries on the 
range of valid model applications. 

 

                                                 
2 Sources of variability of the data are measurement or sampling errors and inherent variability of the 
phenomena under different conditions. 
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The error in the model due to uncertainty in the input or parameters in the model is often 
not accounted for because some input or parameters are considered fixed, as discussed in 
Section 4.2.3 of (Cafeo and Cavendish (2001)): 
 

The standard engineering practice is to estimate, one way or another (literature, 
mean values of data obtained from experiments, etc), a single value for such 
parameters and proceed with the calculation using these “representative” 
values. This may be an adequate approach to treating this uncertainty, 
especially if it can be argued that the range of uncertain parameters values is 
narrow and computed results are not sensitive to variations in these uncertain 
parameters. When parameter uncertainty is important, then we argue that the 
calculations made with best estimates of single values of uncertain parameters 
are not the appropriate way of dealing with this uncertainty – especially when 
making comparisons of computed results with data derived from validation 
experiments. 

 
Considering that the input and parameters are fixed ignores the uncertainties of these 
values and thus the propagation of these uncertainties to the model output that accounts 
for the variability of the error. Understanding the variability of the error would allow a 
proper measure of how close the output of a model is to the real data in a statement like: 
“Based on the analysis of these validation experiments and comparisons with 
computations, we are 80% confident that the actual system or process performance will 
differ from the computational prediction by no more than 10%.” (Cafeo and Cavendish 
(2001)) 
 
To obtain an accurate description of the variability or distribution of the error often 
necessitates multiple runs of the model. Time and the corresponding cost, for running 
multiple simulations of a computer model depends on how many inputs and how 
complex the model is. So, even when field data is abundant—as is the case for the 
atmospheric sciences, where some atmospheric data has been collected hourly or daily 
for many years and for a variety of locations—the complexity of the model may still 
make validation problematic, as noted in (Fuentes et al (2003)): 
 

Evaluation of the performance of a numerical model is mostly constrained by 
the amount and quality of observational data available for comparison with 
modeling results, and by the ease with which the models can provide runs that 
are appropriate to compare to the data. 

 
Validation with scarce data, simplification of complex models for simulation of the error, 
distribution of the error and decomposition of the error are discussed in the steps of the 
validation framework in Section 3.1 A mathematical framework to address the 
uncertainties and define the error will be presented in Section 3.2. 
 
3. Statistical Validation  
3.1. Validation Framework 
  Validation steps depend on the model that is being validated and the goal of the 
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analyst. However, one general framework for validation has been proposed in several 
papers. In particular, the technical report (Bayarri et al (2002)) by NISS in collaboration 
with General Motors proposed a six-step iterative framework for validation and applied it 
to two test beds:  a car crash model and a spot welding model.  The latter will be 
presented in Section 4.  The six steps are described in this Section with a few comments 
and recommendations from other papers.  
 
The six-step validation procedure in (Bayarri et al (2002) and (Cafeo and Cavendish 
(2001)) is an iterative one:   
 

…a series of activities or steps. These are roughly ordered by sequence in which 
they are performed. The completion of some or all in the series of activities will 
typically lead to new issues and questions, requiring revision and revisiting of 
some or all the activities, even if the model is unchanged. New demands placed 
on the model and changes in the mode through new development make 
validation a continuing process. The framework must allow for such dynamics. 
(Quoted from Cafeo and Cavendish (2001).) 

 
The six steps are: 

1. Specifying model inputs and parameters with associated uncertainties or 
ranges---the Input/ Uncertainty (I/U) map. 

2. Determining the evaluation criteria. 
3. Collecting data and designing experiments. 
4. Approximating output of the computer model. 
5. Analyzing model output; comparing computer model output with field 

data. 
6. Feedback information into current validation exercise and feed-forward 

information into future validation activities. 
 
Step 1 
In the first step, an assessment of uncertainties in the model inputs and parameters (e.g., 
fixed vs. variable, known vs. unknown, and range of uncertainty) is done by experts. 
When the number of inputs is large, it is essential to set priorities among the inputs in this 
step to help design the experiments, survey or collection of data.  
 
Step 2 
In the second step a choice is made for specific evaluation criteria to compare the model 
to reality. These criteria could be particular outputs, all outputs or a function of the 
outputs. The data collection will be also affected by this step and, as the data are 
analyzed, the evaluation criterion might be revisited in the iterative process.  
 
Step 3 
The first and second steps allow the design of informative experiments or data collection 
in the third step. The data collection can be done in multiple stages; at each stage 
different scenarios varying one input at a time or a block of inputs or modules of the 
model are considered. When the number of inputs is large or some input’s variation range 
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is large, several papers suggested using “space-filling” strategies of choosing the input 
values at which to experiment. One such method is the Latin Hypercube Design3. The 
end of each data collection stage is the end of an iteration of steps 1-3, i.e., after each 
stage, the steps1-3 would be reconsidered before the next stage.  
 
Step 4 
While other steps are necessary in validation, this step is optional. Approximating the 
computer model by a faster model in this step would save time in simulations when the 
original model is not fast enough (G. Molina et al. (2003)) and (Fuentes et al. (2003). A 
few statistical techniques are proposed in (Bayarri et al. (2002)) to  approximate a model 
including dimensionality reduction techniques which identify and exclude less significant 
elements in the model (e.g., Principal Component methods and Proper Orthogonal 
Decomposition such as ‘ANalysis Of VAriance’ (ANOVA));  linearization/Gaussian 
error accumulation method, which linearizes the model so that input distributions can be 
passed though the model using linear Gaussian updating; response surface methodology, 
including Gaussian processes (used in (Bayarri et al. (2002)) and neural networks; and 
Bayesian networks, which allow uncertainty transference between sub-models from 
which the  model is constructed. An approximating model is called a meta-model or an 
emulator in (Fuentes et al. (2003)), and methods for generating an emulator of 
atmospheric sciences models are discussed in this paper.   
 
Step 5 
The outcome of the validation is determined in the fifth step wherein the comparison of 
model output to reality takes place. One first performs a sensitivity analysis on the model, 
which does not rely on real data. The goal of sensitivity analysis is to understand the 
propagation of the uncertainties from the model input to the model output and to 
determine which inputs affect the output more strongly. Then the model output is 
compared to the output from field data, the error is decomposed into multiple sources of 
error (e.g., random measurement error in data collection, error in tuning or/and 
calibration4, error in the model’s description of reality). Visual tools such as the graphics 
used in (Covey et al. (2003)) or the animation of CORSIM could help determine the 
sources of error and visualize the mean and the variation of the error.   
 
Step 6 
This last step is the iterative step. Information from previous steps is used to improve the 
model and the improved model is subsequently validated through steps1-5.  
 

                                                 
3 For independent inputs, the idea of the Latin Hypercube design derives from the field of Latin square 
experimental deign. For a discussion of this method, refer to McKay, M. Beckman, R., and Conover, W., 
(1979), “A comparison of Three Methods of Selecting Values of Input Variables in the Analysis of Output 
from a Computer Code”, Technometrics, Vol.21, #2. 239-245. 
4 From (Sacks et al. 2000) Calibration and tuning a model are general terms, often used interchangeably. 
Tuning is a phrase commonly associated with adjusting input parameters to match model output whereas 
calibrating refers to the process where the model output are used, either alone or with field data, to 
determine input parameters. “In calibration, one tries to find the true---but unknown---physical value of the 
parameter, while in tuning one simply tried to find the best fitting value” 
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3.2 Mathematical Framework  
To specify the error and separate well-known fixed or variable input of the model from 
calibrated or tuned input a useful framework was used in (Bayarri et al. (2002)), (Trucano 
et al. (2001)), (Easterling and Berger (2002)), and (Fuentes et al  (2003)).  The error is 
defined as the arithmetic difference between the output or numerical result of the model 
and the corresponding output from reality (past data, experimental data or survey): “error 
= model - reality”. “Inputs” denoted by x are distinguished from “parameters” denoted by 
u, where x and u are necessary for the model M to compute the output yM . The output 
from reality corresponding to the same input x is denoted by y, 
 

yM = M( x ; u) 
y = yM  + e(x), 
 

where e(x) is the unknown error or bias of the model and x is the vector of controllable 
inputs (Bayarri et al. 2002), a function of space and/or time (Trucano et al., 2001), or the 
set of variables whose values define a physical entity and the environment to which it is 
subjected. For example, x might represent physical dimension(s), materials, environment 
variables, and/or initial boundary conditions (Easterling and Berger, 2002). On the other 
hand, the model parameter u is the vector of unknown tuning and/or calibration 
parameters in the model (Bayarri et al. 2002). It includes parameters that are needed to 
specify physical responses in the models, such as transfer coefficients in the set of 
equations on which M is based (Easterling and Berger, 2002).  
 
The error e(x) contains errors from the uncertainty of the input in the model and possible 
model error. Note that because y can’t always be known exactly due to measurement 
errors or mismatches between physical testing and model structure, it is often difficult to 
characterize e(x). Investigating e(x) over ranges of x of interest, for example by looking 
at the distribution of e(x) and its mean and variance, would allow evaluating model 
accuracy and the model’s predictive capability. The error is a function of the inputs. If the 
error is a linear function of the inputs, then subtracting the linear regression of the error 
on the inputs from the model would correct for the bias. This method is often used in 
engineering when the existence of a bias is known. Subtracting a nonlinear function of 
the input from the model to account for the bias was done in (Bayarri et al. (2002)). 
 
4. Examples 
Several examples from engineering, atmospheric sciences, and social sciences are cited in 
this paper. Three validation examples will be described in more detail and others will be 
described very briefly. The first example is a resistance spot welding model (Bayarri et 
al. (2002)) which was validated using the six step procedure defined in Section 3.1. The 
second example presents the validation of CORSIM, a microsimulator of traffic flow in a 
street network. The third example is the comparison and evaluation of 18 models in 
atmospheric sciences. Other examples described briefly are from engineering, 
atmospheric sciences, and health sciences. 
 
Resistance spot welding model: The physical theoretical model of spot welding combines 
thermal, electrical and mechanical physics. It is a coupling of partial differential 
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equations that govern heat and electrical conduction with those that govern temperature 
dependant, elastic/plastic mechanical deformation. The inputs include the geometry, 
material properties, conductivities, electrical resistivity, numerical parameters, current 
and load. The output of interest is the diameter of the resulting weld nugget.  

1. I/U map: The I/U map displayed in a table informs that the first three inputs 
(geometry, material properties and conductivities) are varied, the electrical 
resistivity is a tuned parameter, the numerical parameters are set to default values 
and the current and load are fixed. 

2. Evaluation criteria: the two outputs of interest represent the evaluation criteria: 
nugget size after 8-cycles and nugget size as a function of the number of cycles. 

3. Data collection and design of experiments: Because there are many inputs, some 
fixed and some variable, and the variable inputs are either discrete or continuous, 
it is impossible to test for all possible values of the input.  Therefore, the Latin 
Hypercube Design was used to design 35 different experiments. 

4. Approximation of computer model output: To approximate the model by a 
random function, a Gaussian process response surface approximation (GASP) was 
used. In order to use the same field data for tuning the parameter and validating 
the model, a Bayesian GASP was used.  

5. Analyses of model output; comparing computer model output with field data and 
Feedback loop: using the Bayesian formulation, the bias of the model was 
estimated along with the distribution of the tuning parameter and uncertainty 
tolerances on the bias function and predictions were calculated. 

Conclusion of the validation: The posterior distribution of the resistivity parameter shows 
a high uncertainty. The model has a bias, and the bias remains even after tuning. 
However, the bias-corrected predictions might be tolerable. 
 
Transportation example 
The papers by (Sacks et al. (2002)), (Sacks et al. (2000)), and summarized presentation of 
Nagui Rouphail, Jerome Sacks and Byungky Park in (Berk et al (2002)) present the 
CORridor SIMulation (CORSIM) and its statistical validation. CORSIM is a 
microsimulation computer model that simulates traffic flow in a street network under 
complex conditions, including traffic signal settings. The two main questions which 
motivated the validation are: how well does CORSIM reproduce field condition and how 
well does CORSIM predict new situations?  
 
In addition to these papers, a working paper by (G. Molina et al (2003)) presents a  
method for Bayesian tuning of CORSIM. 
 
To address the validation questions, the National Institute of Statistical Sciences (NISS) 
undertook a case study with the cooperation of the Chicago Department of Transportation 
and the Urban Transportation Center of the University of Illinois at Chicago. Data were 
collected on an important street network in the city of Chicago. This data was used both 
for determining the values of some inputs to CORSIM and also to evaluate CORSIM’s 
capability to model field conditions.  
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CORSIM is a stochastic simulator that moves vehicles second-by-second through a 
network. It represents individual vehicles (hence the name microsimulator) which enter 
the road network at random times, move according to local interaction rules describing 
governing phenomena, such as vehicle following and lane changing, and turn (or not) at 
intersections according to prescribed probabilities. 

1. I/U map: Inputs are classified in three types: fixed and controllable inputs, 
random and noncontrolllable inputs and controllable inputs. The fixed and 
controllable inputs include the geometry (link and node) of the street network 
(e.g., distance between intersections, number of traffic lanes), the placement of 
stop signs, bus stops and routes and parking conditions. Random and 
noncontrollable inputs include generation of vehicles by sampling inter-arrival 
time distributions at each entry node (parameters for the inter-arrival times were 
estimated by a simple moment estimator of a parameter of a gamma distribution) 
and designation of vehicle type (auto or truck) by making independent Bernoulli 
trials with a fixed probability estimated from field data. The dwelling time of 
buses at bus stops and inter-arrival times at entry nodes are also considered 
random. Other random parameters are turn probabilities (estimated from field 
data) and driver characteristics such as car-following behavior and lane-changing 
maneuvers, for which CORSIM provides default distributions. Finally, 
controllable inputs include settings of the traffic signals, such as cycle length, 
green times and offsets.  

2. Evaluation criteria: CORSIM provides several outputs: an animation package that 
enables the visualization of the traffic movements and aggregated numerical 
output for each link.  The latter includes the  number of trips on each link, average 
link travel time, link queue time, maximum queue length on each lane in the link, 
and link delays. The evaluation relies on an evaluation function and comparison 
of animation output against real video. The evaluation function used in the three 
papers (Sacks et al. (2000)), (Berk et al. (2002)) and (G. Molina (2003)) differ. In 
the paper by (Sacks et al. (2000), the stop-time on approaches to intersections was 
used as the primary evaluation function. In (Berk et al. (2002)), the maximum 
queue length (MQL) was used as an evaluation function. Finally, in (G. Molina 
(2003)) the total queuing time of vehicles in the network was used. A visual 
validation by using the animation was used to check assumptions in the model.  

3. Data Collection: Data was collected on an important street network in the city of 
Chicago. The data collection was either through observers or video recording. The 
data was processed for three time periods of an hour each covering “peak” as well 
as “shoulder” period. This data was used for tuning parameters in CORSIM and 
also to evaluate CORSIM’s capability to model field conditions.  

4. Approximation of computer model output: Because the computer model is not 
fast enough to apply the Bayesian tuning using Markov Chain Monte Carlo 
approach, a simpler stochastic network that mimics the traffic simulator with 
respect to the two tuning parameters of interest was proposed in (G. Molina et al. 
(2003)). 

5. Analysis of output and Feedback: When high variability was found in the 
evaluations function, the simulations were further explored, which led to a better 
tuning of the parameters to reflect the conditions in the field. For example, the 
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histogram displaying the distribution of MQL for 100 simulations in (Berk et al. 
(2002)) shows that the field data MQL is in the range of variation. However, the 
variability of MQL in the simulations is high and causes spillback and gridlock5 
not observed in the field. To check the reason for such high variability, the 
animation was consulted and the cause was determined to be long stopping time 
at a stop sign in the model compared to the “rolling-stop” behavior in the field 
data. The model was adjusted for a lower stopping time to account for this 
behavior and the variability of the mean queue time was significantly reduced, 
resulting in an absence of spillback. Similarly, the speed was changed from 30 to 
20 miles per hour in (Sacks et al. (2000)) to be more consistent with the field data.  

 
Conclusion: CORSIM is imperfect but can be used effectively to plan signals in an urban 
road network. 
 
Atmospheric science example (Curt Covey et al. (2003)) 
This report presents a comparison and evaluation by the Coupled Model Intercomparison 
Project (CMIP) of 18 atmospheric models developed by different research groups. CMIP 
was established in 1995 in an effort to understand why some atmospheric models using 
global coupled ocean-atmosphere general circulation models (coupled GCMs)6 
developed by different research groups were giving somewhat contradictory answers to 
the same questions. In particular, models were giving different answers to the questions 
involving the effect of increase of CO2 on global warming. The differences in the output 
come partly from different assumptions and adjustments that the models make. 
 
In (Covey et al. (2003)), the simulations of the different models are compared to each 
other and also compared to the measured values over an 80-year period up to the present. 
Results of simulations from these 18 models and variations of the simulations and errors 
were presented using several visualization tools. More specifically, the paper used time 
series plots, latitude-longitude and latitude-height plots with mean contours and shaded 
variance, a Taylor diagram, and space-time error plots. 
 
The inputs to GCMs include a small number of external boundary conditions such as the 
solar “constant” and atmospheric concentration of radiatively active gases and aerosols.  
The outputs analyzed in this paper include surface air temperature, precipitation, mean 
sea level pressure, humidity, ocean temperature at 1000 m depth, barotropic stream 
function, and sea ice thickness. These outputs vary over time and space. 
 
Some of the analysis and corresponding graphics are described below 

1. Comparison of global- and annual mean observations. Observations and results of 
simulations are averaged in both time (average of monthly means to form an 
annual mean) and location (average over latitude and longitude of the models 

                                                 
5 “Spillback occurs when congestion causes traffic to back up and block movement at an upstream 
intersection. Failure of spillback to clear up can result in gridlock.” 
6 GCMs that include interactive sea ice simulate the physical climate system, given only a small number of 
external boundary conditions such as the solar “constant” and atmospheric concentration of radiatively 
active gases and aerosols. 
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simulations). Two time series displayed the global- and annual temperature means 
over the last 80 years and the global- and annual precipitation means for the last 
80 years. “The most striking aspect is the stability of model-simulated 
temperature and precipitation.”  

2. Comparison of long-term mean averages (average for the past 80 years). The 
long-term time mean averages for most inputs are presented in a latitude-
longitude axis plot or/and in a latitude-and-height axis plot to visualize the zonal 
variations. For each choice of axis, there are four panels. One panel allows 
visualization of the variations in the model simulation by representing the average 
over all models of the long-term mean average (contour) and the intermodel 
standard deviation (color shading). A second panel allows visualization of the 
variations in the error, i.e., the difference between a model’s mean and the 
observations, by presenting the mean error (contour) and the intermodel standard 
deviation of the error (color shading). A third panel gives zonal averages for the 
individual model control runs and the observations, each represented as a curve. 
To control for the variation over time, a last panel gives the average over all 
models of the difference between the last 20-year mean and the first 20-year mean 
from the 80-year perturbation simulations, in which atmospheric carbon dioxide 
increases at a rate of 1% per year (contours), together with this difference 
normalized by the corresponding standard deviation (color shading).  

3. Taylor diagrams of the total spatial and temporal variability of three fields. A 
Taylor diagram was constructed for surface air temperature, sea level pressure and 
precipitation. This diagram allows the visualization of three quantities—standard 
deviation normalized by observation, correlation with observation, and root mean 
square difference from observation—in a two-dimensional space7.  

4. The component of space-time errors diagram: it is a shaded table, where each 
column is a model and each row is a component of the error. The total error of 
each model was decomposed into bias and pattern error. The bias is the error 
component associated with global- and annual mean and the pattern error is the 
remaining error. Instead of numbers, the table displays a color coded scheme 
varying from blue (lowest) to red (highest) value of the error component.  

5. Other graphics include the spectral density8 by years for observed and models 
simulations as well as the confidence limit. 
 

The main result of this analysis is that all models “simulate an overall level of natural 
internal climate variability that is within the bounds set by observations.” 
In this atmospheric science example, the validation data are not experimental, but they 
are the available atmospheric history. Hence, this study doesn’t allow to track meaningful 

                                                 
7“The radial coordinate is the ratio of the modeled to observed standard deviation. The cosine of the angle 
of the model point from the horizontal axis is the spatio-temporal correlation between model and 
observation. When plotted in these coordinates, the diagram also indicates the root-mean-square difference 
between model and observation: this difference is proportional to the linear distance between the model 
point and the ’observed’ point lying on the horizontal axis at unit distance from the origin.” 
8 In this paper, “The spectral density follows the algorithms described by Jenkins and Watts calculating the 
spectra from autocovariance with lags up to 1/4 the length of each time series and using a Tukey window 
1/10 the length of each time series.” 

 12



structural changes in the system (here he environment, e.g. due to different carbon 
emissions) which we often hope for in validation. 
 
Other examples 
In the SANDIA validation metric projects paper by (Trucano et al. (2001)), methods for 
validation of two examples were discussed: a structural dynamic case study and foam 
decomposition case study. The first case study is related to weapons simulations in 
normal Stockpile-to-Target-Sequences (STS) environments, and the second case study 
considers the problem of foam decomposition under thermal states related to fire relevant 
to abnormal STS environments.  
 
In (Fuentes et al. (2003)), instead of using the term validation, authors used the term 
“model assessment” to describe the same procedure. This paper presents several 
approaches for applying statistical techniques to model assessment, applies the 
approaches to atmospheric models, and compares the approaches. The Bayesian melding 
technique is illustrated when there is ample model output and sparse monitoring data by 
applying it to the atmospheric model called “Model-3”. The geostatistical approach is 
illustrated when monitoring data is required from a dense network but detailed analysis of 
the model output is enabled by applying it to the SARMAP atmospheric model. The last 
approach describes a situation where it is difficult to get a sufficient number of model 
runs and a statistical approximation to the model output is compared to data. This last 
approach is applied to the SACCO atmospheric model.  
 
Other useful discussions of statistical validation of computer models appear in (Davis et 
al. (2000)), which presents a validation of the Regional Oxidant Model (ROM); in (Berk 
et al. (2002)), which presents methods for validation in meteorology, wildfire control and 
immune system function (in addition to the CORSIM discussion already mentioned); and 
in two working papers from Statistics Canada (Flanagan et al. (2003) and Edward Ng et 
al. (2002)), which discuss the validation of the POpulation HEalth Model (POHEM) 
microsimulation model for cancer screening. In Addition, a car crashed model was 
validated using the six-step validation procedure in (Bayarri et al (2002)). 
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