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Introduction

This paper presents an overview of statistical validation of complex computer models.
Such models—used, for example, to simulate traffic in a street network, a car crash, the
effect of increasing CO, on global warming, or the cost-effectiveness of a procedures in
cancer screening—play important roles in scientific research and policy and decision
making. The computer models discussed in this paper are all based on mathematical
models of the real phenomena of interest, as opposed to, for instance, models (such as
those based on neural networks) that emulate the behavior of a phenomena without
explicitly attempting to represent the underlying components.

Validating such models has been emphasized in at least two reports from the National
Academies: NAS (1991) “Improving Information for Social Policy Decisions -- The Uses
of Microsimulation Modeling: Volume I, Review and Recommendations™ and NAS
(1998) ““Statistics, Testing, and Defense Acquisition: New Approaches and
Methodological Improvements.” Validation has also been the focus of a number of
workshops. One notable example was a “Workshop on Statistical Approaches for the
Evaluation of Complex Computer Models,” held December 3-4, 1999 in Santa Fe, New
Mexico as a joint activity of the Committee on Applied and Theoretical Statistics of the
National Research Council, Los Alamos National Laboratory, and the National Institute
of Statistical Sciences (NISS). Another, “Workshop on Foundations for Modeling and
Simulation (M&S) Verification and Validation (V&V) in the 21st Century”, better known
as Foundations ’02, was held October 22-24, 2002 in the Kossiakoff Conference and
Education Center at the Johns Hopkins University Applied Physics Laboratory in Laurel,
Maryland (USA).

The process of validation was formally defined by the Department of Defense (DoD) and
slightly modified by the American Institute of Aeronautics and Astronautics (AIAA) as

The process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the
model.

An alternate term, model assessment, was proposed in (Fuentes et al (2003)). The latter
term avoids the implication that the validation or assessment is done just once, to
essentially certify a model’s validity. Rather, model assessment is seen as part of an
iterative process to continually improve models, based on an understanding of their
capabilities and limitations at emulating reality. An important distinction to make is

! This white paper was developed in the summer of 2003 while serving a policy internship at the National
Academies.



between the process of validation and the process of verification. Verification was
defined by the DoD as the process of determining that a model implementation
accurately represents the developer’s conceptual description of the model and the
solution to the model. As illustrated in the diagram below (Cafeo and Cavendish, 2001),
while validation is the process of comparing the computer model and conceptual model
to reality, verification is the process of checking and debugging the code to make sure it
reflects the conceptual model accurately.

Diagram from (Cafeo and Cavendish, 2001)

Computer Reality
Model o Conceptual
Validation Model

Simulation Analysis

Validation

] P i
Com pu ter [(_)g_r:a_rrl_r_n_l—rlg_“—_—__-»—::! Conce ptu al

Model Model

Computer
Model
Verification

The goal of this paper is to give an overview of statistical methods and methodologies
used or proposed for validation of complex computer models in different disciplines in
sciences or social sciences. Examples of validation in transportation planning (Sacks et al
2000) and (Berk et al 2002), engineering, atmospheric sciences and social sciences will
be used to illustrate the goal of validation and the methodologies.

In Section 1, computer models will be categorized in different types. General ideas about
validation will be discussed in Section 2. In Section 3 statistical validation methods are
discussed and a mathematical framework is introduced. Finally, some examples will be
presented in Section 4.

1. Computer model types

The computer models considered in this paper are based on conceptual models that
approximate reality and which are in turn represented by mathematical equations. For
example, the spot welding example described in Section 4 (Bayarri et al (2002)) is based
on a physical theoretical model which combines thermal, electrical and mechanical
physics, and the CORridor SIMulation (CORSIM) (Sacks et al (2000)) microsimulation
model is based on a stochastic model of traffic flow.

In a keynote address at the “Workshop on Statistical Approaches for the Evaluation of
Complex Computer Models” (Berk et al 2002), Dr. William Press, the Deputy Director
for Science and Technology at Los Alamos National Laboratories, proposed a taxonomy



and examples of computer models. Dr Press classified computer models in several types
depending on the following aspects:
1. The conceptual model on which the computer model is based. The conceptual
model is called “accurate” when the physics of the phenomena is known and
deterministic, “statistically accurate” when the phenomenon is statistical, or
“phenomenologically accurate” when the model captures qualitatively identifiable

phenomena.

2. Type of input for the computer model. It is “accurate” when the input is a fixed
value, “statistically accurate” when the input is a random variable.

3. Type of phenomena to be modeled. It is deterministic physical or emergent
physical. An emergent physical phenomenon is neither explicitly represented in
the system’s elementary components or their couplings nor in the system’s initial

and boundary conditions.

The validation process will depend on the type of computer model. Dr. Press gave
examples and comments on validation for some model types as summarized in the table

below.
Computer model types Examples Comments on Validation
1. “Accurate” models of Static civil - Three sources of modeling

deterministic physical
phenomena with “accurate”
input conditions.

2. “Accurate” models of
deterministic physical
phenomena with “statistically
accurate” input conditions.

engineering, models
of bridges and dams,
weapons code

errors: error from conceptual
model, error in the computer
model (truncation vs round-off
error), error from randomness
of input for type 2.

- Compare model run to data
using appropriate norm.

3. “Statistically accurate”
models of nondeterministic
physical phenomena.

Turbulent fluid
phenomena and
climate models

- Need for better simulation
methods to take into account
uncertainty in the model.

- Metric for model-to model
and data-model evaluation

4. *“Accurate” or “statistically
accurate” models of emergent
physical phenomena.

Statistical mechanics,
smooth particle
hydrodynamics and
traffic flow modeling

5. “Phenomenologically
accurate” models of emergent
physical phenomena.

6. “Phenomenologically
interesting” models.

Turbulent
intermittency, traffic
jams and epidemics.

- Computer model generally
inaccurate but still useful,
could be used for training.

- How to map “fields of data”
into “phenomena” or “events”
and the behavior of these
phenomena.

7. “Video games” as models.




A formal mathematical definition of input, output and parameters of a model is necessary
to define the statistical validation framework, and this will be introduced in Section 3.2.

2. Validation

In addition to verification of the model code and checking that outputs of the model are
considered reasonable by specialists in the field, validation of the model with real data is
a necessary step for checking the accuracy. To validate a computer model, i.e., determine
the degree to which the computer model is an accurate representation of the real world,
results of computer model experiments need to be compared to real data. The comparison
could be between the output of the model and past data, as for example evaluating a
weather simulation model by comparing its output to past weather data (Covey et al.
(2003)) or evaluating a microsimulation model for cancer treatment by comparing its
output for patients with certain profiles to actual medical survey data for similar cohorts.
The comparison could also be between the output of the model and the realizations of
designed experiments or surveys, as for example in evaluating the predictions from car
crash models by comparing them to the outcomes of designed car crash experiments.
Such validation by data is called external validation in the social sciences.

Although several replicates are necessary to account for the variability? in the data from
the phenomena of interest, the cost of collecting and processing the data often limits the
number of available replicates of the phenomena. For example, collecting and processing
data to validate CORSIM required manual recording of traffic and video coverage, and it
was very costly. Performing real car crash experiments with dummies in order to
validate a car crash model is costly, and collecting new data or retrieving archived data
sets from past history to validate a social or economic model is also costly.

When an appropriate set of data is collected, comparison with the computer model will
involve analyzing the error or bias, i.e., the difference between the model prediction or
forecast and the field data. The variability in the data and the randomness and sources of
error in the model are not always well understood. As discussed in the internal research
report of General Motors (Cafeo and Cavendish (2001)):

A major problem with the use of math models and simulations in support of
product and process design is that the models are only the abstractions of
reality, and the insights and understanding they can provide is limited. It is
important that the model builders and code users understand the limitations of
these models used to support product and process design. It is unfortunate
however, that almost all computational models used to support engineering
design are used deterministically, that is they are seldom exercised to explicitly
account for error and uncertainty, and they do not provide boundaries on the
range of valid model applications.

2 Sources of variability of the data are measurement or sampling errors and inherent variability of the
phenomena under different conditions.



The error in the model due to uncertainty in the input or parameters in the model is often
not accounted for because some input or parameters are considered fixed, as discussed in
Section 4.2.3 of (Cafeo and Cavendish (2001)):

The standard engineering practice is to estimate, one way or another (literature,
mean values of data obtained from experiments, etc), a single value for such
parameters and proceed with the calculation using these ““representative™
values. This may be an adequate approach to treating this uncertainty,
especially if it can be argued that the range of uncertain parameters values is
narrow and computed results are not sensitive to variations in these uncertain
parameters. When parameter uncertainty is important, then we argue that the
calculations made with best estimates of single values of uncertain parameters
are not the appropriate way of dealing with this uncertainty — especially when
making comparisons of computed results with data derived from validation
experiments.

Considering that the input and parameters are fixed ignores the uncertainties of these
values and thus the propagation of these uncertainties to the model output that accounts
for the variability of the error. Understanding the variability of the error would allow a
proper measure of how close the output of a model is to the real data in a statement like:
“Based on the analysis of these validation experiments and comparisons with
computations, we are 80% confident that the actual system or process performance will
differ from the computational prediction by no more than 10%.” (Cafeo and Cavendish
(2001))

To obtain an accurate description of the variability or distribution of the error often
necessitates multiple runs of the model. Time and the corresponding cost, for running
multiple simulations of a computer model depends on how many inputs and how
complex the model is. So, even when field data is abundant—as is the case for the
atmospheric sciences, where some atmospheric data has been collected hourly or daily
for many years and for a variety of locations—the complexity of the model may still
make validation problematic, as noted in (Fuentes et al (2003)):

Evaluation of the performance of a numerical model is mostly constrained by
the amount and quality of observational data available for comparison with
modeling results, and by the ease with which the models can provide runs that
are appropriate to compare to the data.

Validation with scarce data, simplification of complex models for simulation of the error,
distribution of the error and decomposition of the error are discussed in the steps of the
validation framework in Section 3.1 A mathematical framework to address the
uncertainties and define the error will be presented in Section 3.2.

3. Statistical Validation
3.1. Validation Framework
Validation steps depend on the model that is being validated and the goal of the



analyst. However, one general framework for validation has been proposed in several
papers. In particular, the technical report (Bayarri et al (2002)) by NISS in collaboration
with General Motors proposed a six-step iterative framework for validation and applied it
to two test beds: a car crash model and a spot welding model. The latter will be
presented in Section 4. The six steps are described in this Section with a few comments
and recommendations from other papers.

The six-step validation procedure in (Bayarri et al (2002) and (Cafeo and Cavendish
(2001)) is an iterative one:

...a series of activities or steps. These are roughly ordered by sequence in which
they are performed. The completion of some or all in the series of activities will
typically lead to new issues and questions, requiring revision and revisiting of
some or all the activities, even if the model is unchanged. New demands placed
on the model and changes in the mode through new development make
validation a continuing process. The framework must allow for such dynamics.
(Quoted from Cafeo and Cavendish (2001).)

The six steps are:

1. Specifying model inputs and parameters with associated uncertainties or
ranges---the Input/ Uncertainty (1/U) map.
Determining the evaluation criteria.
Collecting data and designing experiments.
Approximating output of the computer model.
Analyzing model output; comparing computer model output with field
data.
Feedback information into current validation exercise and feed-forward
information into future validation activities.

aswN
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Step 1

In the first step, an assessment of uncertainties in the model inputs and parameters (e.g.,
fixed vs. variable, known vs. unknown, and range of uncertainty) is done by experts.
When the number of inputs is large, it is essential to set priorities among the inputs in this
step to help design the experiments, survey or collection of data.

Step 2

In the second step a choice is made for specific evaluation criteria to compare the model
to reality. These criteria could be particular outputs, all outputs or a function of the
outputs. The data collection will be also affected by this step and, as the data are
analyzed, the evaluation criterion might be revisited in the iterative process.

Step 3

The first and second steps allow the design of informative experiments or data collection
in the third step. The data collection can be done in multiple stages; at each stage
different scenarios varying one input at a time or a block of inputs or modules of the
model are considered. When the number of inputs is large or some input’s variation range



is large, several papers suggested using “space-filling” strategies of choosing the input
values at which to experiment. One such method is the Latin Hypercube Design®. The
end of each data collection stage is the end of an iteration of steps 1-3, i.e., after each
stage, the steps1-3 would be reconsidered before the next stage.

Step 4

While other steps are necessary in validation, this step is optional. Approximating the
computer model by a faster model in this step would save time in simulations when the
original model is not fast enough (G. Molina et al. (2003)) and (Fuentes et al. (2003). A
few statistical techniques are proposed in (Bayarri et al. (2002)) to approximate a model
including dimensionality reduction techniques which identify and exclude less significant
elements in the model (e.g., Principal Component methods and Proper Orthogonal
Decomposition such as ‘ANalysis Of VAriance’ (ANOVA)); linearization/Gaussian
error accumulation method, which linearizes the model so that input distributions can be
passed though the model using linear Gaussian updating; response surface methodology,
including Gaussian processes (used in (Bayarri et al. (2002)) and neural networks; and
Bayesian networks, which allow uncertainty transference between sub-models from
which the model is constructed. An approximating model is called a meta-model or an
emulator in (Fuentes et al. (2003)), and methods for generating an emulator of
atmospheric sciences models are discussed in this paper.

Step 5

The outcome of the validation is determined in the fifth step wherein the comparison of
model output to reality takes place. One first performs a sensitivity analysis on the model,
which does not rely on real data. The goal of sensitivity analysis is to understand the
propagation of the uncertainties from the model input to the model output and to
determine which inputs affect the output more strongly. Then the model output is
compared to the output from field data, the error is decomposed into multiple sources of
error (e.g., random measurement error in data collection, error in tuning or/and
calibration?, error in the model’s description of reality). Visual tools such as the graphics
used in (Covey et al. (2003)) or the animation of CORSIM could help determine the
sources of error and visualize the mean and the variation of the error.

Step 6
This last step is the iterative step. Information from previous steps is used to improve the
model and the improved model is subsequently validated through steps1-5.

® For independent inputs, the idea of the Latin Hypercube design derives from the field of Latin square
experimental deign. For a discussion of this method, refer to McKay, M. Beckman, R., and Conover, W.,
(1979), “A comparison of Three Methods of Selecting Values of Input Variables in the Analysis of Output
from a Computer Code”, Technometrics, Vol.21, #2. 239-245,

* From (Sacks et al. 2000) Calibration and tuning a model are general terms, often used interchangeably.
Tuning is a phrase commonly associated with adjusting input parameters to match model output whereas
calibrating refers to the process where the model output are used, either alone or with field data, to
determine input parameters. “In calibration, one tries to find the true---but unknown---physical value of the
parameter, while in tuning one simply tried to find the best fitting value”



3.2 Mathematical Framework

To specify the error and separate well-known fixed or variable input of the model from
calibrated or tuned input a useful framework was used in (Bayarri et al. (2002)), (Trucano
et al. (2001)), (Easterling and Berger (2002)), and (Fuentes et al (2003)). The error is
defined as the arithmetic difference between the output or numerical result of the model
and the corresponding output from reality (past data, experimental data or survey): “error
= model - reality”. “Inputs” denoted by x are distinguished from “parameters” denoted by
u, where x and u are necessary for the model M to compute the output yy . The output
from reality corresponding to the same input x is denoted by vy,

ym=M(X; u)
y=ym +e(x),

where e(x) is the unknown error or bias of the model and x is the vector of controllable
inputs (Bayarri et al. 2002), a function of space and/or time (Trucano et al., 2001), or the
set of variables whose values define a physical entity and the environment to which it is
subjected. For example, x might represent physical dimension(s), materials, environment
variables, and/or initial boundary conditions (Easterling and Berger, 2002). On the other
hand, the model parameter u is the vector of unknown tuning and/or calibration
parameters in the model (Bayarri et al. 2002). It includes parameters that are needed to
specify physical responses in the models, such as transfer coefficients in the set of
equations on which M is based (Easterling and Berger, 2002).

The error e(x) contains errors from the uncertainty of the input in the model and possible
model error. Note that because y can’t always be known exactly due to measurement
errors or mismatches between physical testing and model structure, it is often difficult to
characterize e(x). Investigating e(x) over ranges of x of interest, for example by looking
at the distribution of e(x) and its mean and variance, would allow evaluating model
accuracy and the model’s predictive capability. The error is a function of the inputs. If the
error is a linear function of the inputs, then subtracting the linear regression of the error
on the inputs from the model would correct for the bias. This method is often used in
engineering when the existence of a bias is known. Subtracting a nonlinear function of
the input from the model to account for the bias was done in (Bayarri et al. (2002)).

4. Examples

Several examples from engineering, atmospheric sciences, and social sciences are cited in
this paper. Three validation examples will be described in more detail and others will be
described very briefly. The first example is a resistance spot welding model (Bayarri et
al. (2002)) which was validated using the six step procedure defined in Section 3.1. The
second example presents the validation of CORSIM, a microsimulator of traffic flow in a
street network. The third example is the comparison and evaluation of 18 models in
atmospheric sciences. Other examples described briefly are from engineering,
atmospheric sciences, and health sciences.

Resistance spot welding model: The physical theoretical model of spot welding combines
thermal, electrical and mechanical physics. It is a coupling of partial differential




equations that govern heat and electrical conduction with those that govern temperature
dependant, elastic/plastic mechanical deformation. The inputs include the geometry,
material properties, conductivities, electrical resistivity, numerical parameters, current
and load. The output of interest is the diameter of the resulting weld nugget.

1. /U map: The I/U map displayed in a table informs that the first three inputs
(geometry, material properties and conductivities) are varied, the electrical
resistivity is a tuned parameter, the numerical parameters are set to default values
and the current and load are fixed.

2. Evaluation criteria: the two outputs of interest represent the evaluation criteria:
nugget size after 8-cycles and nugget size as a function of the number of cycles.

3. Data collection and design of experiments: Because there are many inputs, some
fixed and some variable, and the variable inputs are either discrete or continuous,
it is impossible to test for all possible values of the input. Therefore, the Latin
Hypercube Design was used to design 35 different experiments.

4. Approximation of computer model output: To approximate the model by a
random function, a Gaussian process response surface approximation (GASP) was
used. In order to use the same field data for tuning the parameter and validating
the model, a Bayesian GASP was used.

5. Analyses of model output; comparing computer model output with field data and
Feedback loop: using the Bayesian formulation, the bias of the model was
estimated along with the distribution of the tuning parameter and uncertainty
tolerances on the bias function and predictions were calculated.

Conclusion of the validation: The posterior distribution of the resistivity parameter shows
a high uncertainty. The model has a bias, and the bias remains even after tuning.
However, the bias-corrected predictions might be tolerable.

Transportation example

The papers by (Sacks et al. (2002)), (Sacks et al. (2000)), and summarized presentation of
Nagui Rouphail, Jerome Sacks and Byungky Park in (Berk et al (2002)) present the
CORridor SIMulation (CORSIM) and its statistical validation. CORSIM is a
microsimulation computer model that simulates traffic flow in a street network under
complex conditions, including traffic signal settings. The two main questions which
motivated the validation are: how well does CORSIM reproduce field condition and how
well does CORSIM predict new situations?

In addition to these papers, a working paper by (G. Molina et al (2003)) presents a
method for Bayesian tuning of CORSIM.

To address the validation questions, the National Institute of Statistical Sciences (NISS)
undertook a case study with the cooperation of the Chicago Department of Transportation
and the Urban Transportation Center of the University of Illinois at Chicago. Data were
collected on an important street network in the city of Chicago. This data was used both
for determining the values of some inputs to CORSIM and also to evaluate CORSIM’s
capability to model field conditions.



CORSIM is a stochastic simulator that moves vehicles second-by-second through a
network. It represents individual vehicles (hence the name microsimulator) which enter
the road network at random times, move according to local interaction rules describing
governing phenomena, such as vehicle following and lane changing, and turn (or not) at
intersections according to prescribed probabilities.

1. /U map: Inputs are classified in three types: fixed and controllable inputs,
random and noncontrolllable inputs and controllable inputs. The fixed and
controllable inputs include the geometry (link and node) of the street network
(e.g., distance between intersections, number of traffic lanes), the placement of
stop signs, bus stops and routes and parking conditions. Random and
noncontrollable inputs include generation of vehicles by sampling inter-arrival
time distributions at each entry node (parameters for the inter-arrival times were
estimated by a simple moment estimator of a parameter of a gamma distribution)
and designation of vehicle type (auto or truck) by making independent Bernoulli
trials with a fixed probability estimated from field data. The dwelling time of
buses at bus stops and inter-arrival times at entry nodes are also considered
random. Other random parameters are turn probabilities (estimated from field
data) and driver characteristics such as car-following behavior and lane-changing
maneuvers, for which CORSIM provides default distributions. Finally,
controllable inputs include settings of the traffic signals, such as cycle length,
green times and offsets.

2. Evaluation criteria: CORSIM provides several outputs: an animation package that
enables the visualization of the traffic movements and aggregated numerical
output for each link. The latter includes the number of trips on each link, average
link travel time, link queue time, maximum queue length on each lane in the link,
and link delays. The evaluation relies on an evaluation function and comparison
of animation output against real video. The evaluation function used in the three
papers (Sacks et al. (2000)), (Berk et al. (2002)) and (G. Molina (2003)) differ. In
the paper by (Sacks et al. (2000), the stop-time on approaches to intersections was
used as the primary evaluation function. In (Berk et al. (2002)), the maximum
queue length (MQL) was used as an evaluation function. Finally, in (G. Molina
(2003)) the total queuing time of vehicles in the network was used. A visual
validation by using the animation was used to check assumptions in the model.

3. Data Collection: Data was collected on an important street network in the city of
Chicago. The data collection was either through observers or video recording. The
data was processed for three time periods of an hour each covering “peak” as well
as “shoulder” period. This data was used for tuning parameters in CORSIM and
also to evaluate CORSIM’s capability to model field conditions.

4. Approximation of computer model output: Because the computer model is not
fast enough to apply the Bayesian tuning using Markov Chain Monte Carlo
approach, a simpler stochastic network that mimics the traffic simulator with
respect to the two tuning parameters of interest was proposed in (G. Molina et al.
(2003)).

5. Analysis of output and Feedback: When high variability was found in the
evaluations function, the simulations were further explored, which led to a better
tuning of the parameters to reflect the conditions in the field. For example, the
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histogram displaying the distribution of MQL for 100 simulations in (Berk et al.
(2002)) shows that the field data MQL is in the range of variation. However, the
variability of MQL in the simulations is high and causes spillback and gridlock5
not observed in the field. To check the reason for such high variability, the
animation was consulted and the cause was determined to be long stopping time
at a stop sign in the model compared to the “rolling-stop” behavior in the field
data. The model was adjusted for a lower stopping time to account for this
behavior and the variability of the mean queue time was significantly reduced,
resulting in an absence of spillback. Similarly, the speed was changed from 30 to
20 miles per hour in (Sacks et al. (2000)) to be more consistent with the field data.

Conclusion: CORSIM is imperfect but can be used effectively to plan signals in an urban
road network.

Atmospheric science example (Curt Covey et al. (2003))

This report presents a comparison and evaluation by the Coupled Model Intercomparison
Project (CMIP) of 18 atmospheric models developed by different research groups. CMIP
was established in 1995 in an effort to understand why some atmospheric models using
global coupled ocean-atmosphere general circulation models (coupled GCMs)®
developed by different research groups were giving somewhat contradictory answers to
the same questions. In particular, models were giving different answers to the questions
involving the effect of increase of CO, on global warming. The differences in the output
come partly from different assumptions and adjustments that the models make.

In (Covey et al. (2003)), the simulations of the different models are compared to each
other and also compared to the measured values over an 80-year period up to the present.
Results of simulations from these 18 models and variations of the simulations and errors
were presented using several visualization tools. More specifically, the paper used time
series plots, latitude-longitude and latitude-height plots with mean contours and shaded
variance, a Taylor diagram, and space-time error plots.

The inputs to GCMs include a small number of external boundary conditions such as the
solar “constant” and atmospheric concentration of radiatively active gases and aerosols.
The outputs analyzed in this paper include surface air temperature, precipitation, mean
sea level pressure, humidity, ocean temperature at 1000 m depth, barotropic stream
function, and sea ice thickness. These outputs vary over time and space.

Some of the analysis and corresponding graphics are described below
1. Comparison of global- and annual mean observations. Observations and results of
simulations are averaged in both time (average of monthly means to form an
annual mean) and location (average over latitude and longitude of the models

® “Spillback occurs when congestion causes traffic to back up and block movement at an upstream
intersection. Failure of spillback to clear up can result in gridlock.”

® GCMs that include interactive sea ice simulate the physical climate system, given only a small number of
external boundary conditions such as the solar “constant” and atmospheric concentration of radiatively
active gases and aerosols.
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simulations). Two time series displayed the global- and annual temperature means
over the last 80 years and the global- and annual precipitation means for the last
80 years. “The most striking aspect is the stability of model-simulated
temperature and precipitation.”

2. Comparison of long-term mean averages (average for the past 80 years). The
long-term time mean averages for most inputs are presented in a latitude-
longitude axis plot or/and in a latitude-and-height axis plot to visualize the zonal
variations. For each choice of axis, there are four panels. One panel allows
visualization of the variations in the model simulation by representing the average
over all models of the long-term mean average (contour) and the intermodel
standard deviation (color shading). A second panel allows visualization of the
variations in the error, i.e., the difference between a model’s mean and the
observations, by presenting the mean error (contour) and the intermodel standard
deviation of the error (color shading). A third panel gives zonal averages for the
individual model control runs and the observations, each represented as a curve.
To control for the variation over time, a last panel gives the average over all
models of the difference between the last 20-year mean and the first 20-year mean
from the 80-year perturbation simulations, in which atmospheric carbon dioxide
increases at a rate of 1% per year (contours), together with this difference
normalized by the corresponding standard deviation (color shading).

3. Taylor diagrams of the total spatial and temporal variability of three fields. A
Taylor diagram was constructed for surface air temperature, sea level pressure and
precipitation. This diagram allows the visualization of three quantities—standard
deviation normalized by observation, correlation with observation, and root mean
square difference from observation—in a two-dimensional space?.

4. The component of space-time errors diagram: it is a shaded table, where each
column is a model and each row is a component of the error. The total error of
each model was decomposed into bias and pattern error. The bias is the error
component associated with global- and annual mean and the pattern error is the
remaining error. Instead of numbers, the table displays a color coded scheme
varying from blue (lowest) to red (highest) value of the error component.

5. Other graphics include the spectral density8 by years for observed and models
simulations as well as the confidence limit.

The main result of this analysis is that all models “simulate an overall level of natural
internal climate variability that is within the bounds set by observations.”

In this atmospheric science example, the validation data are not experimental, but they
are the available atmospheric history. Hence, this study doesn’t allow to track meaningful

"“The radial coordinate is the ratio of the modeled to observed standard deviation. The cosine of the angle
of the model point from the horizontal axis is the spatio-temporal correlation between model and
observation. When plotted in these coordinates, the diagram also indicates the root-mean-square difference
between model and observation: this difference is proportional to the linear distance between the model
point and the "observed’ point lying on the horizontal axis at unit distance from the origin.”

® In this paper, “The spectral density follows the algorithms described by Jenkins and Watts calculating the
spectra from autocovariance with lags up to 1/4 the length of each time series and using a Tukey window
1/10 the length of each time series.”
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structural changes in the system (here he environment, e.g. due to different carbon
emissions) which we often hope for in validation.

Other examples

In the SANDIA validation metric projects paper by (Trucano et al. (2001)), methods for
validation of two examples were discussed: a structural dynamic case study and foam
decomposition case study. The first case study is related to weapons simulations in
normal Stockpile-to-Target-Sequences (STS) environments, and the second case study
considers the problem of foam decomposition under thermal states related to fire relevant
to abnormal STS environments.

In (Fuentes et al. (2003)), instead of using the term validation, authors used the term
“model assessment” to describe the same procedure. This paper presents several
approaches for applying statistical techniques to model assessment, applies the
approaches to atmospheric models, and compares the approaches. The Bayesian melding
technique is illustrated when there is ample model output and sparse monitoring data by
applying it to the atmospheric model called “Model-3”. The geostatistical approach is
illustrated when monitoring data is required from a dense network but detailed analysis of
the model output is enabled by applying it to the SARMAP atmospheric model. The last
approach describes a situation where it is difficult to get a sufficient number of model
runs and a statistical approximation to the model output is compared to data. This last
approach is applied to the SACCO atmospheric model.

Other useful discussions of statistical validation of computer models appear in (Davis et
al. (2000)), which presents a validation of the Regional Oxidant Model (ROM); in (Berk
et al. (2002)), which presents methods for validation in meteorology, wildfire control and
immune system function (in addition to the CORSIM discussion already mentioned); and
in two working papers from Statistics Canada (Flanagan et al. (2003) and Edward Ng et
al. (2002)), which discuss the validation of the POpulation HEalth Model (POHEM)
microsimulation model for cancer screening. In Addition, a car crashed model was
validated using the six-step validation procedure in (Bayarri et al (2002)).
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