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* Digital datais generally converted to point clouds in high dimensional Euclidean
space .

» The datais often correlated and analyzed through global linear algebratools such
as SVD.

» More generaly a kernel defining affinity between data points can replace the
correlation .(usually the kernel of a positive operator)

* Distances between data points are used to build a graph for which the spectral
theory of the Laplace operator can be used to provide data clustering .

* |n all these cases the elgenfunctions of some linear operator are used to effect a
dimensional reduction through projection into alow dimensional space.

« We claim that diffusion (inference) geometries provide a powerful
systematic approach to data analysis and organization, a
methodology which enables global situational assessment based on
local inferences.



0.8} : G 12, N
06 —
y o e N 2
Gl ey e R M S MR —
S LB -9 < : o L : i
021 ..- . Ty - " 3 8 =)
. Tl R o Ny K
: _ & -\,‘ - - \ 4 --lll ) 5 - B g _‘,-_
OF s . : . ; . a4 de —
3 > *, \1\ N T e P Sl
all " AL S E 8 i F' i
_.[:]2 | : = . R \Tr. _.- ! . |_ '. . __ ‘- —
X . 1"es 1 = -
% " . " # y o . "
-0.4 >y o i ey ey —
—06} : -
osl ¥ . - g AR i
_I 1 1 1 1 1 1 1
-2 =15 -1 —-0.5 0 0.5 1 1.5 2

Diffusions between A and B have to go through the bottleneck ,while C is easily
reachable from B. The Markov matrix defining a diffusion could be given by a
kernel , or by inference between neighboring nodes.

The diffusion distance accounts for preponderance of inference . The shortest
path between A and C isroughly the same as between B and C . The diffusion
distance however islarger since diffusion occurs through a bottleneck.



Diffusion Maps
Let {x;}Y, denote a set of N points in R?.
View collection of data as a graph with N vertices and with

connection strength between x; and @x; given by k.(x;.x;). where

|z — y||?
2¢

ke(x,y) =exp | —

Construct a Markov chain random walk based on these weights:

ke(x, ;)

pe(x;)

M;; = Pr{a(t+¢) = aja(t) = x;} =

where

pe(x;) = Z ke (i, ;)

Claim: first few eigenvectors and eigenvalues of this matrix { ;. ¢;}

contain useful geometric information.



Diffusion Maps / Normalized Graph Laplacian

The diffusion map at time t is defined as the non-linear embedding

€r — (I)f_(ili) = (/\iol(m))\zoz(m) /\EO,{L(JZ))

Diffusion Distances

Definition: Diffusion distance at time ¢,
Di(x.y) = MI(x.x)+ M (y.y) — 2M(x, y)
Spectral theorem:

D}, y) = DN (6() — 65(w)” = |[Be(a) — Be(w)]

Diffusion map converts the diffusion distance into Euclidian distance.
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The long term diffusion of heterogeneous material is remapped below . The left side has a higher
proportion of heat conducting material ,thereby reducing the diffusion distance among points, the bottle
neck increases that distance
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Diffusion map into 3 d of the heterogeneous graph
The distance between two points measures the diffusion
between them.
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A mixture of two materials where the red is very conductive relative to the
blue The green sets are diffusion balls at time 3 .

On the right we have the diffusion map which encodes the diffusion
distance as the Euclidean distance in the map (in order number of samples,

not its square).



A similarity or relationship between two points (digital documents) is
computed as a combination of all chains of inference linking them,
these ar e the diffusion metrics.

Clustering in this metric leads to robust document segmentation and
tracking.

*VVarious local criteria of relevance lead to distinct geometries. In these
geometries the user can define relevance and filter away unrelated
Information.

«Self organization of digital documents is achieved through local
similarity modeling , the top eigenfunctions of the empirical model
provide global organization of the given set of data.

*The diffusion maps embed the data into low dimensional Euclidean
space and convert isometrically the (diffusion) relational inference
metric to the corresponding Euclidean distance..



Diffusion metrics can be computed efficiently as an ordinary
Euclidean distance in a low dimensional embedding by the diffusion
map ( total computation time scale linearly with the data size, and
can be updated on line) .

Data exploration, and per ceptualization is enabled by the diffusion
map since it converts complex inference chains to ordinary physical
distance in the per ceptual displays, to provide situational
awareness.

*The diffusion geometry which is induced by the various chains of
Infer ence enable a multiscale hierarchical organization governed
by the scaling of the length of chains.

Diffusion from r efer ence points provides efficient linkages to
r elated points propagating sear ches into the data whileranking for
relevance



| ntrinsic data cloud filtering by diffusion geometry.

This method extends the algorithm in which the curve is parametrized by arc length and the
filtered using Fourier modes. In our case the eigenfunctions are discretized FT approximations
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Thedata is given as a random cloud , thefilter organizesthe
data. The colors are not part of the data
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A noisy disorganized spiral , filtered at band 14 .
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Point cloud around a dumbell surface
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Gaussan cloud filtering by diffusion
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Problems in High Dimensions
Many algorithms are based on distances ||x; — ;|

In high dimensions, large distances are (almost) meaningless.

In many applications, high dimensional data has an intrinsic low
dimensionality.
dimensional reduction: How can we embed data in a low

dimensional space (and find the intrinsic dimensionality) ?



Diffusion as a search mechanism. Starting with afew labeled pointsin two classes, the
points are identified by the “preponderance of evidence’. (Szummer ,Slonim, Tishby...)
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Figure 1: Top left: local connectivity for /K=5 neighbors. Below are classifications using
Markov random walks for ¢=3. 10, and 30 (top to bottom. left to right). estimated with
average margin. There are two labeled points (large cross, circle) and 148 unlabeled points,
classified (small crosses. circles) or unclassified (small dots).



Conventional nearest neighbor search , compared with adiffusion search. The datais
a pathology slide ,each pixel isadigital document (spectrum below for each class)
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A pathology dlide in which three tissue type are displayed as an RGB mixture ,where each color
represents the probability of being of agiven type.
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The First two eigenfunctions organize the small images which were
provided in random order



Organization of documents using diffusion geometry
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A smple model for the generation of point clouds* is provided
through the Langevin and Fokker -Planck equations:

Consider a stochastic differential equation in n > 1 dimensions
r=-VU(x)+w

where

x(t) € R" - configuration at time ¢
U(x) : potential

w(t) : n-dimensional Brownian motion

Examples: macromolecules and proteins in water, interacting particle

systems, low dimensional projections of deterministic systems

Think of propagation of fire in the presence of wind. Or water draining down a landscape



Let p(a@, t|ly, tg) denote the forward transition probability density
(t > tg).

It satisfies the Fokker-Planck (FP) equation

dp

i V- |Vp+pVU]

The steadyv state follows the Boltzmann distribution

plz)=e"®) /7, Z — normalization factor

Approach to steady state governed by the eigenfunctions with the

ot

smallest eigenvalues of the FP operator.

When n > 1 the FP equation cannot be solved numerically or

analytically. However, simulations of the SDE are "easily performed”



Weighted Diffusion Maps
If instead we define a new weighted kernel

ke(x,y)
ke, y) =
(z,y) Vp=()p-(y)

and consider the normalized graph Laplacian (diffusion map) based

e
Ll

on this kernel, then as ¢ — 0, the corresponding evolution equation is
dp -

i Hip=Ap—Vp-VU

This equation is the same as the backward FP equation of the SDE

r=-VU +w



Time Evolution

Approach to steady state governed by the eigenfunctions with the
smallest eigenvalues of the FP operator.

. _ =Mt
pla.t) = E aje” (@)
j
When n > 1 the FP equation cannot be solved numerically or

analytically. However, simulations of the SDE are "easily performed”

Given a lot of simulated data {z;}?,.N > 1, possibly from many
different trajectories, can we approximate the first few eigenfunctions

i) !



3-well potential

Case I: Well defined potential wells

U(x.y) Points X, color coded by P, 0,050,

2-D diffusion map clearly shows the 3 wells and the most common

paths between them.



Double Well Potential with 2 connecting paths
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Original dumbbell Embedding

The natural diffusion on the surface of the dumbell is mapped out in
the embedding . Observe that A iscloser to B thanto C ,and that
the two lobes are well separated by the bottleneck.
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Figure 2.9: Left: Set of images randomly permuted. This is the input of the algorithm.
Right: output of the algorithm, the sequence is reordered with respect to the angle of

rotation of the head (the sequence is to be read from left to right, and top down).



Extension of Empirical functions off the data set .

An important point of this multiscale analysis involves the relation of
the spectral theory on the set to the localization on and off the set of
the corresponding eigenfunctions.

In the case of a smooth compact submanifold of Euclidean space it
can be shown that any band limited function of band B can be
expanded to exponential accuracy in terms of eigenfunctions of the
L aplace operator with eigenvalues not exceeding B

Conversdly every eigenfunction of the laplace operator satisfying this
condition extends as a band limited function with band C’ B ( both of
these statements can be proved by observing that for eigenfunctions
of a Laplace operator we can estimate the size of a derivatives of
order 2m as a power m of the eigenvalue, implying that
elgenfunctions on the manifold are well approximated by restrictions
of band limited functions of corresponding band.
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Multiscal e extension of
expansions on the data
set . The bottom image
shows the distance to
which low degree
expansions in Laplace
eigenfunctions can be
extended reliably.



Gaussian extension of cos(8) Gaussian extension of cos(20)

3 s 3 g

FIGURE 6. Extension of the functions f;(f) = cos(273¢) for 7 = 1,2, 3 and 4, from
the unit circle to the plane.



