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• Digital data is generally converted to point clouds in high dimensional Euclidean 
space . 

• The data is often correlated and analyzed through global linear algebra tools such 
as SVD.  

• More generally a kernel defining affinity between data points can replace the 
correlation .(usually the kernel of a positive operator)

• Distances between data points are used to build a graph for  which the spectral 
theory of the Laplace operator can be used to provide data clustering .

• In all these cases the eigenfunctions of some linear operator are used to effect a 
dimensional reduction through projection into a low dimensional space .

• We claim that diffusion (inference) geometries provide a powerful 
systematic approach to data analysis and organization, a 
methodology which enables global situational assessment based on
local inferences .



Diffusions between A and B have to go through the bottleneck ,while C is easily 
reachable from B. The Markov matrix defining a diffusion could be given by a 
kernel , or by inference between neighboring nodes. 

The diffusion distance accounts for preponderance of inference . The shortest 
path between A and C is roughly the same as between B and C . The diffusion 
distance however is larger since diffusion occurs through a bottleneck.







Original data set Embedding of data into the first
3 diffusion coordinates



The long term diffusion of heterogeneous material is remapped below . The left side has a higher 
proportion of heat conducting material ,thereby reducing the diffusion distance among points , the bottle 
neck increases that distance



Diffusion map into 3 d of the heterogeneous graph 
The distance between two points measures the diffusion 
between them.



A mixture of two materials where the red is very conductive relative to the 
blue The green sets are diffusion balls at time 3 . 

On the right we have the diffusion map which encodes the diffusion 
distance as the Euclidean distance in the map (in order number of samples, 
not its square).



•A similarity or relationship between two points (digital documents) is 
computed as a combination of all chains of inference linking them , 
these are the diffusion metrics .

•Clustering in this metric leads to robust document segmentation and 
tracking.

•Various local criteria of relevance lead to distinct geometries. In these 
geometries the user can define relevance and filter away unrelated 
information.

•Self organization of digital documents is achieved through local 
similarity modeling , the top eigenfunctions of the empirical model 
provide global organization of the given set of data.

•The diffusion maps embed the data into  low dimensional Euclidean 
space and convert isometrically the (diffusion) relational inference
metric to the corresponding Euclidean distance .



•Diffusion metrics can be computed efficiently as an ordinary 
Euclidean distance in a low dimensional embedding by the diffusion 
map ( total computation time scale linearly with the data size, and 
can be updated on line ) .

•Data exploration, and perceptualization is enabled by the diffusion 
map since it converts complex inference chains to ordinary physical 
distance in the perceptual displays, to provide situational 
awareness.

•The diffusion geometry which is induced by the various chains of
inference enable a multiscale hierarchical organization governed 
by the scaling of the length of chains.

•Diffusion from reference points provides efficient linkages to 
related points propagating searches into the data while ranking for 
relevance 



Intrinsic data cloud filtering by diffusion geometry.
This method extends  the algorithm in which the curve is parametrized by arc length and the 

filtered using Fourier modes. In our case the eigenfunctions are discretized FT approximations 
. 



The data is given as a random cloud , the filter organizes the 
data.             The colors are not part of the data 



A noisy disorganized spiral , filtered at band 14 . 



Point cloud around a dumbell surface



Gaussian cloud filtering by diffusion





Diffusion as a search mechanism. Starting with a few labeled points in two classes , the 
points are identified by the “preponderance of evidence”. (Szummer ,Slonim, Tishby…)



Conventional nearest neighbor search  , compared with a diffusion search. The data is 
a pathology slide ,each pixel is a digital document (spectrum below for each class )



A pathology slide in which three tissue type are displayed as  an RGB mixture ,where each color 
represents the probability of being of a given type .



The First two eigenfunctions organize the small images which were 
provided in random order 



Organization of documents using diffusion geometry



A simple model for the generation of point clouds * is provided 
through the Langevin and Fokker-Planck equations :

*----------------------------------------------------------------------------------------------------------------

Think of propagation of fire in the presence of wind.  Or water draining down a landscape













The natural diffusion on the surface of the dumbell is mapped out in 
the embedding . Observe that A is closer to B  than to C ,and that 
the two lobes are well separated by the bottleneck.





Extension of Empirical functions off the data set .

An important point of this multiscale analysis involves the relation of 
the spectral theory on the set to the localization on and off the set of 
the corresponding eigenfunctions .

In the case of a smooth compact submanifold of  Euclidean space it 
can be shown that any band limited function of band B can be 
expanded to exponential accuracy in terms of eigenfunctions of the 
Laplace operator with eigenvalues not exceeding 

Conversely every eigenfunction of the laplace operator satisfying this 
condition extends as a band limited function with band C’B ( both of 
these statements can be proved by observing that for eigenfunctions
of a Laplace operator we can estimate the size of a derivatives of 
order 2m as a power m of the eigenvalue, implying that 
eigenfunctions on the manifold are well approximated by restrictions 
of band limited functions of corresponding band.   
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Multiscale extension of 
expansions on the data 
set . The bottom image 
shows the distance to 
which low degree 
expansions in Laplace
eigenfunctions can be 
extended reliably.




