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Visualizing Multivariate Uncertainty outline

Outline

Multivariate uncertainty and “moral statistics”
A. M. Guerry’s Moral Statistics of France
Guerry’s data and analyses

Multivariate analyses: Data-centric displays

Bivariate plots and data ellipses
Biplots
Canonical discriminant plots
HE plots for multivariate linear models

Multivariate mapping: Map-centric displays

Star maps
Reduced-rank color maps
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Visualizing Multivariate Uncertainty guerry1

Multivariate Uncertainty and “Moral Statistics” ∼ 1800

It is a capital mistake to theorize before one has data. Sherlock Homes in
Scandal in Bohemia

What to do about crime?
Liberal view: increase education, literacy
Conservative view: build more prisons

What to do about poverty?
Liberal view: increase social assistance
Conservative view: build more poor-houses

But:
Little actual data – all armchair theorizing
No ways to understand or visualize relationships between variables
• Statistical graphics just invented (Playfair)— line graph, bar chart, pie chart
• All 1D or 1.5D (time series)
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Visualizing Multivariate Uncertainty background

The rise of “moral statistics” and modern social science

Political arithmetic: William Petty (and others)

1654— first attempt at scientific survey (on Irish estates)
1687— idea that wealth and strength of a state depended on its subjects
(number and characteristics)

Demography: Johann Peter Süssmilch (1741)—

importance of measuring and analyzing population distributions
idea that ethical and state policies could encourage growth and wealth
(increase birth rate, decrease death rate)
• discourage alcohol, gambling, prostitution & priestly celibacy
• encourage state support for medical care, distribution of land, lower taxes

Statistik: Numbers of the state (1800–1820), Germany and France

collect data on imports, exports, transportation, ...

Guerry & Quetelet
Quetelet: Concepts of “average man” and “social physics”
Guerry: First real social data analysis (Guerry, 1833)
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Visualizing Multivariate Uncertainty data

Guerry’s data

Compte général de l’administration de la justice criminelle en France

The first national compilation of official justice data (1825)
• detailed data on all charges and disposition
• collected quarterly in all 86 departments.
Other sources: Bureau de Longitudes (illegitimate births); Parent-Duchâtelet
(prostitutes in Paris); Compte du ministere du guerre (military desertions); ...

Moral variables: Scaled so ’more’ is ’better’

Crime pers Population per Crime against persons
Crime prop Population per Crime against property
Donations Donations to the poor
Infants Population per illegitimate birth
Literacy Percent who can read & write
Suicides Population per suicide

Tried to define these to ensure comparability and representativeness
• Crime: Use number of accused rather than convicted
• Literacy: Reported levels of education unreliable; use data from military draft

examinations (% of young men able to read and write)

Other variables: Ranks by department: wealth, commerce, ...
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Visualizing Multivariate Uncertainty questions

Guerry’s Questions

Should crime and other moral variables be considered as structural, lawful

characteristics of society, or simply as indicants of individual behavior?

Statistical regularity as the key to social science (“social physics”) social

equivalent of “law of large numbers”)

Guerry showed that rates of crime had nearly invariant distributions over time

(1825–1830) when classified by region, sex of accused, type of crime, etc. “We

would be forced to recognze that the facts of moral order, like those of physical

order, obey invariant laws...” (p.14)

Relations between crime and other moral variables

Do crimes against persons and crimes against property show the same or

different trends?

How does crime relate to education and literacy?

• Some “armchair” arguments had suggested increasing literacy to decrease

crime: “The definitive result shows that 67 out of 100 prisoners can neither

read nor write. What stronger proof could there be that ignorance is the

mother of all vices” (A. Taillander, 1828)

Does crime vary coherently over regions of France (C, N, S, E, W)?
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Visualizing Multivariate Uncertainty maps

Guerry’s maps
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Visualizing Multivariate Uncertainty maps

Guerry’s maps

Population per Crime against persons

Rank 1 - 9 10 - 19 20 - 28
29 - 38 39 - 47 48 - 57
58 - 66 67 - 76 77 - 86

Population per Crime against property

Rank 1 - 9 10 - 19 20 - 28
29 - 38 39 - 47 48 - 57
58 - 66 67 - 76 77 - 86

Per cent who can Read and Write

Rank 1 - 8 10 - 17 20 - 26
29 - 35 38 - 47 48 - 56
58 - 66 68 - 76 77 - 86

Population per Illegitimate birth

Rank 1 - 9 10 - 19 20 - 28
29 - 38 39 - 47 48 - 57
58 - 66 67 - 76 77 - 86

Donations to the poor

Rank 1 - 9 10 - 19 20 - 28
29 - 38 39 - 47 48 - 57
58 - 66 67 - 76 77 - 86

Population per Suicide

Rank 1 - 9 10 - 19 20 - 28
29 - 38 39 - 47 48 - 57
58 - 66 67 - 76 77 - 86
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Visualizing Multivariate Uncertainty maps

Guerry’s analyses

Relate variables by comparing maps and ranked lists (1st|| coordinate plot)

Conclusion: no clear relation between crime and literacy

Literacy Ranked lists Crimes against persons

Similar analyses for other variables (suicide, illegitimate births, ...)
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Visualizing Multivariate Uncertainty multivar0

Graphical methods for multivariate data

Bivariate displays: Bivariate displays can be enhanced to show statistical
relations more clearly and effectively

Scatterplots with data (concentration) ellipses and smoothed (loess) curves
Scatterplot matrices
Corrgrams and visual thinning

Reduced-rank displays: Multivariate visualization techniques can show the
statistical data in simple ways, using dimension reduction techniques.

Biplots - show variables and observations in space accounting for greatest
variance
Canonical discriminant plots - show variables and observations in space
accounting for greatest between-group variation

HE plots: Visualization for Multivariate Linear Models
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Visualizing Multivariate Uncertainty bivar

Bivariate plots: Points and visual summaries
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Visualizing Multivariate Uncertainty dataellipse0

The Data Ellipse: Galton’s Discovery

Pearson (1920): “... one of the most noteworthy scientific discoveries arising from pure

analysis of observations.”
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Visualizing Multivariate Uncertainty dataellipse0

The Data Ellipse: Details

Visual summary for bivariate marginal relations

Shows: means, standard deviations, correlation, regression line(s)

Defined: set of points whose squared Mahalanobis distance ≤ c2,

D2(y) ≡ (y − ȳ)T S−1 (y − ȳ) ≤ c2

S = sample variance-covariance matrix

Radius: when y is approx. bivariate normal, D2(y) has a large-sample χ2
2

distribution with 2 degrees of freedom.

• c2 = χ2
2(0.40) ≈ 1: 1 std. dev univariate ellipse– 1D shadows: ȳ ± 1s

• c2 = χ2
2(0.68) = 2.28: 1 std. dev bivariate ellipse

• Small samples: c2 ≈ 2F2,n−2(1 − α)
Construction: Transform the unit circle, U = (sinθ, cos θ),

Ec = ȳ + cS1/2U
S1/2 = any “square root” of S (e.g., Cholesky)

Robust version: Use robust covariance estimate (MCD, MVE)

Nonparametric version: Use kernel density estimation
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Visualizing Multivariate Uncertainty bivar

Bivariate plots: Data ellipse and smoothing
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Scatterplot with 68% data ellipse and smoothed (loess) curve
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Visualizing Multivariate Uncertainty bivar

Bivariate plots: Region differences

C

E

N

S

W

Indre

Haute-Marne

Meuse

Doubs

Cote-d’Or

Jura

Ariege
Haut-Rhin

Corsica

Creuse

Ardennes

P
op

. p
er

 C
rim

e 
ag

ai
ns

t p
er

so
ns

0

10000

20000

30000

40000

Percent Read & Write

10 20 30 40 50 60 70 80

National Academies of Sciences, March 2005 14 c© Michael Friendly



Visualizing Multivariate Uncertainty bivar

Bivariate plots: Scatterplot matrices
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Visualizing Multivariate Uncertainty corrgram

Corrgrams— Correlation matrix displays

How to show a correlation matrix for different purposes? (Friendly, 2002)

Render a correlation to depict sign and magnitude (tasks: lookup, comparison,
detection)

Correlation value (x 100)
-100  -85  -70  -55  -40  -25  -10    5   20   35   50   65   80   95 Number 

Circle 

Ellipse

Bars   

Shaded 

Task-specific renderings:

Task Lookup Comparison Detection

Rendering Number Circle Shading
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Visualizing Multivariate Uncertainty corrgram

Corrgrams— Rendering

Baseball data: (lower) Patterns vs. (upper) comparison

Baseball data: PC2/1 order
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Visualizing Multivariate Uncertainty corrgram

Corrgrams— Variable ordering

Baseball data: (a) alpha vs. (b) correlation ordering (Friendly and Kwan, 2003)

(a) Alpha order
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(b) PC2/1 order
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See: http://www.math.yorku.ca/SCS/sasmac/corrgram.html
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Visualizing Multivariate Uncertainty corrgram

Corrgrams— Variable ordering

Reorder variables to show similarities: PC1 or angles (PC2/PC1)
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Visualizing Multivariate Uncertainty corrgram

Corrgrams— Guerry data

Guerry Variables
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Visualizing Multivariate Uncertainty corrgram

Guerry data— Variable ordering
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Visualizing Multivariate Uncertainty corrgram

Visual thinning: Minimal summaries for large data sets

Guerry data: schematic scatterplot matrix: 68% data ellipse + loess smooth

rime_pers

2199

 37014

Desertion

1

    86

Wealth

1

    86

Infanticide

1

    86

Literacy

12

    74

Instruction

1

    86

Clergy

1

    86

Suicides

3460

163241

Lottery

1

    86

Crime_prop

1368

 20235

Infants

2660

 62486

National Academies of Sciences, March 2005 22 c© Michael Friendly



Visualizing Multivariate Uncertainty multivar1

Multivariate analyses: Reduced rank displays

Multivariate visualization techniques can show the statistical data in simple ways,
using dimension reduction techniques.

Biplots - show variables and departments in space accounting for greatest
variance
Canonical discriminant plots - show variables and departments in space
accounting for greatest between-region variation

Can try to show geographic location by color coding or other visual attributes.

Color code by region
Show data ellipse to summarize regions

→ Data-centric displays: The multivariate data is shown directly; geographic
relations indirectly
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Visualizing Multivariate Uncertainty multivar1

Biplots

Biplots represent both variables (attributes) and observations (departments) in the
same plot— a low-rank (2D) approximation to a data matrix (Gabriel, 1971)

Y � = Y − Y·· ≈ ABT =
d∑

k=1

akbT
k

Variables are usually represented by vectors from origin (mean)
Observations are usually represented by points
Can show clusters of observations by data ellipses

Properties:

Angles between vectors show correlations (r ≈ cos(θ))
Length of variable vectors ∼ % variance accounted for
yij ≈ aT

i bj : projection of observation on variable vector
Dimensions are uncorrelated overall (but not necessarily within group)
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Visualizing Multivariate Uncertainty multivar1

Biplots: Guerry data
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Visualizing Multivariate Uncertainty biplot-bb

Biplots: Baseball data
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Visualizing Multivariate Uncertainty biplot-bb

C

1B

OF

1B

IF

IF

IF

IF

DH

IF

C
OF

IF

UT

IF

IF

C

OFOF

C

1BOF
OF

C

IF

OF

OF

IF

C

IF

C1B

UT C

IF

OF OF

C

OF

IF

OF
OF

OF

IF

IF

OF

IF

IF

IF

DH

OF

IF

UT

IF

1BOF

IF

OF

OF

IF

IF 1B

OF

OF
OF

OF

C

IF

C

OF

IF

OFIF

OF

OF
OF 1B

IF
IF

OF

OF

IF

1B

C

1B

IF

IF

OF

IF

IF

OF

IF OF

OF

IF

1B
OF

OF
OF

IF

IF

DH

IF

1B

OF

OF

UT

OF

OF

OF

1B OF

C

DH

IF

IF

DH

IF OF
OF

IF

OF

OF

IF
IF

C

OF

UT C

IF

OF
C

C

IF

OF

OF

OF

OF
OF

1B
1BOF OF

OF

OF

IF

DH

OF

IF

1B

OF

OF
OF

OF

OF
C

DH

DH

IF

1B

IF

OF
OF

IF

DH

OF
C

OF C

OF

IF

CIF CC
OF

OF

OF
OF OF

IF

OF

IF

C

OF

IF

OF
IF

1B

OF

1B

IF

UT
OF

C
IF

OF

C
C

OF

DH

DH

IF

DH

OF

IF

IF
IF

IF

OF

OF

IF

IF

IF

OF

DH

IF

IF

OF

1B

C

1B
IF

IF

IF

1B

IF

IF

IF

IF

IF

UT

OF

IF

IFUT

OF

OF

IF
IF

C

OF
C

UT

C

IF

IF

OFUT

IF
IFOF

1B

IF

IF
IF

1B 1B

OF

IF

IF
1B

OF

logSal

Years

Homer

Runs

Hits

RBI

Atbat

WalksPutouts

Assists Errors

1BC

DH

IF

OF
UT

D
im

en
si

on
 2

 (
17

.4
%

)

-1.0

-0.5

0.0

0.5

1.0

1.5

Dimension 1 (46.3%)

-1.0 -0.5 0.0 0.5 1.0 1.5

Biplot of baseball data, with data ellipses by position

National Academies of Sciences, March 2005 27 c© Michael Friendly



Visualizing Multivariate Uncertainty biplot-bb
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Visualizing Multivariate Uncertainty multivar1

Canonical discriminant plots

Project the variables into a low-rank (2D) space that maximally discrimates among
regions (Friendly, 1991)

Visual summary of a MANOVA
Canonical dimensions are linear combinations of the variables with maximum
univariate F -statistics.
Vectors from the origin (grand mean) for the observed variables show the
correlations with the canonical dimensions

Properties:

Canonical variates are uncorrelated
Circles of radius

√
χ2

2(1 − α)/ni give confidence regions for group means.
Variable vectors show how variables discriminate among groups
Lengths of variable vectors ∼ contribution to discrimination
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Visualizing Multivariate Uncertainty multivar1

Canonical discriminant plots: Guerry data, by Region
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CDA plots: Baseball data, by player position
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Visualizing Multivariate Uncertainty heplots

HE plots: Visualization for Multivariate Linear Models

How are p responses, Y = (y1, y2, . . . ,yp) related to q predictors,
X = (x1, x2, . . . ,xq)? (Friendly, 2004a)

MANOVA: X ∼ discrete factors
MMRA: X ∼ quantitative predictors
MANCOVA, response surface models,

⎫⎪⎬
⎪⎭

All the same MLM:

Y
(n×p)

= X
(n×q)

B
(q×p)

+ E
(n×p)

Analogs of univariate tests:

Explained variation: MSH �−→ (p × p) covariance matrix, H
Residual variation: MSE �−→ (p × p) covariance matrix, E
Test statistics: F �−→ |H − λE| = 0 �→ λ1, λ2, . . . λs

How big is H relative to E ?

Latent roots λ1, λ2, . . . λs measure the “size” of H relative to E in
s = min(p, dfh) orthogonal directions.
Test statistics: Wilks’ Λ, Pillai trace, Hotelling-Lawley trace, Roy’s maximum
root combine these into a single number
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Visualizing Multivariate Uncertainty heplots

HE plots: Visualization for Multivariate Linear Models

HE plot: for two response variables, (y1, y2), plot a H ellipse and E ellipse

HE plot matrices: For all p responses, plot an HE scatterplot matrix

→ Shows: size, dimensionality, and effect-correlation of H relative to E .

Scatter around group means
represented by each ellipse

(a)

 1

 2

 3

 4

 5

 6

 7

 8

H matrix

E matrix

Deviations of group means from
grand mean (outer) and pooled
within-group (inner) ellipses.

How big is H relative to E?

(b)

Individual group scatter
Y2
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Essential ideas behind multivariate tests: (a) Data ellipses; (b) H and E ellipses
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Visualizing Multivariate Uncertainty heplots

Simple example: Iris data
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(a) Data ellipses and (b) H and E ellipses

H ellipse: Shows 2D covariation of predicted values (means)

E ellipse: Shows 2D covariation of residuals

points: show group means on both variables
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Visualizing Multivariate Uncertainty he-bb

Baseball data: Variation by position

How do relations among variables vary with player’s position?

Fit MANOVA model,

(logSal Years Homer Runs Hits RBI Atbat Walks Putouts
Assists Errors) = Position
HE plots for selected pairs: (Years, logSal), (Putouts, Assists)
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Visualizing Multivariate Uncertainty he-guerry

Guerry data: Predicting crime

How do rates of crime vary with other variables?

Fit MANCOVA model,

(Crime_pers Crime_prop) = Region + Wealth + Suicides
+ Literacy + Donations + Infants

HE plots: Overall, plus for Region and covariate effects
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Overall: Predicted crimes against persons and property are negatively correlated
Larger variation in crimes against property
Region variation greater in crimes against persons
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Each quantitative variable (covariate) plots as a 1D ellipse (vector)
Orientation: relation of xi to y1, y2

Length: strength of relation
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Visualizing Multivariate Uncertainty multimap

Multivariate mapping: Map-centric displays

How to generalize choropleth maps to many variables?

Star maps: Show multivariate data on the map using star icons, variable ∼
length of ray

Reduced-rank RGB displays: Factor analysis → (F1, F2, F3) factor scores
�→ (R, G, B) shading

PREFMAP (x, y) maps: Fit data variables to (Long, Lat) map coordinates.
Display variables as vectors in map coordinates.
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Visualizing Multivariate Uncertainty multimap

Star maps

Suicides

InfantsCrime_prop

Instruction

Donations Crime_pers

Departments colored
by Region

Star map of Guerry Variables (Ranks)
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Visualizing Multivariate Uncertainty multimap

Star maps: Medians by region

Suicides

InfantsCrime_prop

Instruction

Donations Crime_pers

Median Ranks by Region
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Visualizing Multivariate Uncertainty multimap

Star maps: Multivariate boxplots by region

Suicides

InfantsCrime_prop

Instruction

Donations Crime_pers

stars for Q1, Median, Q3
How to show unusual
depts?
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Visualizing Multivariate Uncertainty gfactor

Reduced-rank color-coded displays

Use dimension-reduction technique (PCA, Factor analysis, ...) to produce scores
for observations (departments) on 3 dimensions (F1, F2, F3)

Factor1 Factor2 Factor3
Variable Civil society Moral values Crime

Pop per Crime against persons 0 97
Pop per Crime against property 0 75 0 39

Percent Read & Write -0 72
Pop per illegitimate birth 0 62 0 42

Donations to the poor 0 89
Pop per suicide 0 80

Scale (F1, F2, F3) → [0,1]

Color mapping function, e.g., C(F1, F2, F3) �→ rgb(Fi, Fj , Fk)
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Visualizing Multivariate Uncertainty gfactor

Reduced-rank color-coded displays
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F1

RGB 3-factor map: R=f1, G=f2, B=f3
Variables: Crime_pers Crime_prop Literacy Infants Donations Suicides
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Visualizing Multivariate Uncertainty summary

Summary and future directions

Guerry’s challenge: Understanding uncertainty in multivariate, spatial data

How visualize and understand relations among many variables?
How to relate these to geographic information?

Understanding multivariate variation
Visual summaries (data ellipses, smoothings) can show statistical relations
more clearly and effectively
Reduced-rank visualization methods can show simpler, approximate views,
based on several criteria.
Multivariate statistical models need their own visualization methods, just
beginning – HE plots as an example.

Understanding multivariate, spatial variation
Multivariate visualizations applied to spatial data can be revealing, but still need
work
Statistical methods for spatial data need to be extended to the multivariate
setting.
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