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1 Lipids: Is it normal?

remarks mixed with examples of nonparametric density estimation
in practice (indirect data visualization)

f(x) conveys “all” information — visualize f(x) of derived quan-
tities

as editor of JCGS past 4 yrs, noticeable decrease in number of
graphics submissions

scientists employ a few graphical types 99% of the time
some basic tenets

data # structure

smoothing = f(z) which contains structure (if can spot it)

exploring feature spaces: easy structure (anything works) vs. sub-
tle structure (smoothing helps)



e kernel estimates (ASH) provide an excellent summary of high-D
structure (even if quite biased according to theory)
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2 Old Faithful Data — Times Series

e casy to generate high-dimensional data
e one time series = lagged data

e I am always struck how different the visualizations are for 1-D,
2-D, and 3-D data. Discontinuous. Agree?

e Education required for 3-D visualization and beyond. Not intuitive
for all...

o f(z,y) = f(y) f(z|y)

o f(x,y) gives an overview (gestalt)

o the pair, f(y) and f(y|z), give more precision
o extending f(z,y,2) = f(2) fz,y|z)

o f(z,y,2,1) = () f(z,y,2t)



e cannot visualize LHS directly in any case

® f(ajvyaz)tlatQ) — f(tlatQ) f(ZU,y,Z|t1,t2)
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Figure 1: Old Faithful geyser data.
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Figure 2: Old Faithful geyser data.
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Figure 3: Old Faithful geyser data — lag 1.
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Figure 4: Old Faithful geyser data — lags 1 and 2.



Figure 5: Old Faithful geyser data — lags 1 and 2 (58% contour).




Figure 6: Old Faithful geyser data — 28% and 58% contours.




3 Landsat — Visual Clustering/Discrimination

e more data is good, but not necessarily for visualization

e but more data ¢s good for smoothing

e n — 00 smoothing becomes exact vs. data becomes dense
e eye can be trained but easily tricked/fooled

e more features = better separability of classes (good)

e p—mn(orp>n) = many spurious “‘summaries” that seem
to separate classes; which are stable? (microarrays)

e discovery vs. confirmation
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Figure 7: Landsat IV: scatterplot n=23932 pixels




Figure 8: Landsat IV: scatterplot (blowup)
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Figure 9: Landsat IV: scatterplot (blowup)




Figure 10: Landsat IV: scatterplot (blowup)
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Figure 11: Landsat IV: Histogram of first view
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Figure 12: Landsat IV: Histogram of first blowup
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Figure 14: Landsat IV: Histogram of third blowup



Figure 15: Landsat IV: 3 features of 3 crops (sunflower, spring wheat,
spring barley
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Figure 16: Landsat: 3 crops and 3 features



Figure 17: Landsat: 3 crops and pairwise features



Figure 18: Landsat: 3 crops and trivariate features



Figure 19: Landsat: all crops and trivariate features



4 Lynx and Earthquake Densities — 3 and
4 dimensions

e visualization strongly rooted in “real” word (1-3 dimensions)
e how to extrapolate 1,2,3-D experience to 20,50,1000-D 7

e parallel coordinates allows easy representation of 2-25 dimensions,
but still only able to find low-dimensional features

e limited language for high-D features

e limited to features that can be displayed in a low-D subspace/projection
(eg. PP)

e data with “holes”



Figure 20: Lynx




Figure 21: Lynx




Figure 22: Lynx
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Figure 23: Mount St. Helen’s Earthquake




5 Robust Regression: Mapping Residuals

often advantageous to visualize data indirectly through the filter
of a model

eg. are data normal? plotting data on “normal” paper — easy to
see a straight line and departures from normality (vs. cdf)

likewise, models provide context for data

in “real” world, model may not be known (so nonparametric ap-
proach)

more commonly, “know” model for: (1) noise but not the signal;
(2) signal but not the noise; (3) subset of signal only (4) subset of
noise only (partial model knowledge)

eg. (1) wavelet noise in images = normal coefficients

eg. (2) physics says shape of regression curve for lightning is
quadratic (Tom Burr LANL)



mixture models attractive/effective (or a subset of a mixture model)

minimum distance estimation (vs. EM/MLE) has advantages: (1)
curve matching criterion; (2) robustness against outliers; (3) fitting
incomplete models (Scott, 2001, L2E, Technometrics)

extension to regression straightforward
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Figure 24: Histogram of 125 points from the mixture 0.8 N(0,1) +
0.2 N(5,1). Also shown are the maximum likelihood and L2E fits using
the incorrect model N(u,0?). Finally, the L2E fit of the 3-parameter
model w - N (p,0?) is shown.
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Figure 25: For the star data, straight-line fits by least squares, least
median squares, and L2E.
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Ficure 26: Residual plots for the star data. The assumed N(0.o02) fit



LS residuals robust residuals with wt=0.845

residual

Figure 27: Left frame: Kernel estimate of the residuals for a least-squares
fit of the Boston Housing data, together with the N(0,0?%) fit. Right
frame: Kernel estimate of the residuals for the L2E fit of the Boston
Housing data, together with the w - N (0, 0?) fit, where @ = 0.845.
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Figure 28: Standardized L2E residuals for the Boston Housing data.
Census tracts colored dark red are more than 3 standard deviations below

the predicted median housing value, while dark blue are more than 3 o’s
above the predicted value.
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Figure 29: Detail of previous figure.



Figure 30: Standardized least squares residuals Boston Housing data.



Figure 31: L2E residuals Boston.



Figure 32: Least squares residuals central Boston.



Figure 33: L2E residuals central Boston.
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6 Gaussian Mixture Regression and IPRA
(Iterated Pairwise Replacement Algorithm)

e semiparametric (eg normal mixtures) probably always superior to
kernels beyond 4 or 5 dimensions

e note that kernel estimators are also normal mixtures (K = n)
e find K << n with mixture “close” to the kernel estimate

e IPRA (Scott and Szewczyk, 2001, Technometrics) iterated pair-
wise replacement algorithm

e visualize parameters of mixture or projections

o if K = 17 in ?*° with EM and components N (i, Dy), is real f(x)
just one N (u, ) or not?

e GMR - gaussian mixture regression/classification (Hsi-Guang Sung,
2004 thesis): IPRA + peeling
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Figure 36: Gaussian mixture regression example (GMR).
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Figure 37: Motorcycle data.
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Figure 38: Motorcycle data with minimum spanning tree.
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Figure 42: GMR(40).
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Figure 43: GMR/(30).
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Figure 44: GMR(25).
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Figure 45: GMR/(20).
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Figure 46: GMR(12).
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Figure 47: GMR(11).
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Figure 48: GMR/(10).
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Figure 53: GMR(5).
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Figure 54: GMR(4).
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Figure 55: GMR/(3).
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Figure 56: GMR/(2).
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Figure 57: GMR/(1).
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7 Handwritten Zip Code Data



Figure 59: Mean, standard deviation, and examples of zip code digits 1,
3, 7, and 8.



Figure 60: LDA subspace of zip code digits 1 (x), 3 (e), 7 (+), and 8
(0).



Figure 61: ASH’s for each of the 4 digits for the 1st, 2nd, and 3rd LDA
variable (L-R).



Figure 62: ASH’s for each of the 4 digits for the pairs of LDA variables.



Figure 63: Trivariate ASH of 3 LDA variables for digits 3, 7, and 8. The
digit 7 is in the left cluster; the digit 8 in the top cluster; and the digit
3 in the lower right cluster.
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Figure 64: A sequence of slices of the three-dimensional ASH of the digits
3, 7, and 8 . The z-bin number is shown in each frame from the original
75 bins.
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Figure 65: GMR 256 — 10 — 2 dimensions. Forward best feature
subspace K=2 (digits 0 and 3).
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Figure 66: Backwards best feature subspace K=2 (digits 0 and 3).
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8 Partial Mixture Density Estimation

cool hardware = cool animations

grand tour/grand density tour

compare raw grand tour with invoking projection pursuit (PP)
pure exploration vs. guided/aided exploration

very important for pushing visualization to high-D features is to
introduce models in between the data and the visualization engine

new criteria !?
ggobi has a selection of PP criteria, hardwired for 2-D
limited work on PP criteria for higher dimensions

3-D and 4-D important since can “see” a GT in 3-D (stereo glasses)
and even 4-D (array of 2-D views or stereo 3-D slices)



3-D density grand tour

p-D parallel coordinates tour (no dimension reduction) — opt cri-
teria here?

mixture models may be viable

PMDC fits of partial model —w N (u, )
useful for “probing” high-D surfaces/data
models that aid the process of exploration

eg. Australian athlete data



500+100 mu=5




500+100 mu=5 rho=.7




500+100 mu=5 rho=.7




Figure 69: (top) MLE normal mixture fits to lagged Old Faithful geyser
eruption data with K = 1 and K = 2. The weights in each frame from L
to R are (1.0), (.350,.650), (.645,.355), and (.728,.272). (bottom) L2E
mixture fits, with weights (1.0), (.258,.742), (.714,.286), and (.711, .289).
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Figure 70: L2E fits without weight constraints. (top) The weights in
each frame are (.783), (.253,.694), (.683,.283), and (.751,.297). (bot-
tom) The weights in each frame are (.683), (.253,.316), (.253,.283), and
(.316, .283).




Figure 71: Four more K = 1 partial mixture fits to the geyser data. The
weights in each frame are (.694), (.253), (.316), and (.283).
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Figure 72: Two-o contours of MLE (K = 1), MLE mixture (K = 2),
and partial L2E mixture (K = 1) fits to the blurred star data.
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Figure 73: Ellipses representing the (1,2,3)-0 contours of a L2E partial
mixture estimate of the Australian athlete data.
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Figure 74: Ellipses representing the (1,2,3)-0 contours of a second L2E
partial mixture estimate of the Australian athlete data: w = .43.



9 Skewers: Principal Components for Un-
labeled Mixtures
e complements

e principal components (same as the SVD-method) — important
techniques

e Dan Sorensen’s algorithms for finding K largest singular values
and singular vectors

e useful for massive datasets (collection of images in ¥10:000000)
e BUT — what if data are actually from a mixture of normals

e Def: skewer = 1st principal component re-located to pass through
data cloud

e T + v if one component

e can we define an algorithm that is attracted to a skewer if K > 17



e partial L2E method works, if look at distribution of distance to a
proposed skewer
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Figure 75: Eigenvectors for each of the three Iris species in $? (Sepal
Length and Petal Width) and %3 (Sepal Width added).
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Figure 76: Eigenvectors for each of the three Iris species in % and R*

(grand tour view).
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Figure 77: Eigenvectors in %3 of Versicolor and Virginica Iris species:
colored by species (left frame); colored by size of eigenvalue (right frame)
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Figure 78: “4-D Skewers” of 3 Iris species in R (left frame: variables-

123; right frame: variables-124).
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Figure 79: “4-D Skewers” of 3 Iris species in 3 (left frame: variables-

134; right frame: variables-234).
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Figure 80: 2-D Skewer of Iris Data



Figure 81: 3-D Skewer of Iris Data
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Figure 82: 4-D Skewer of Iris Data
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Conclusions

visualizing uncertainty ideas

for complex visualization, may be too much to try to add uncer-
tainty cues

need a “grand tour” of the “confidence region”, using the same
view /visualization of the data/model

continuity helps learn areas where the model is more/less stable
where structure is not preserved, etc

a “PP” might search for the most extreme curves in the confidence
set

note: hurricane confidence intervals seemed much too narrow this
past summer over 24 hours out, and discontinuous

(ensemble of deterministic models vs. stochastic models?)



e with data mining (complete data), density useful for seeing relative
frequency in universe

e conveying uncertainties when not a random sample still useful ex-
ercise; no real sense of “size” of confidence region; nor properly
centering (biased); nor sure if shape of confidence region is reli-
able (3 wrong)

e thank you www.stat.rice.edu/~scottdw



