Designing Climate Policy: Information Needs

National Academy of Science’s Workshop: Assessing Economic Impacts of Greenhouse Gas Mitigation

October 2–3 2008

Terry M. Dinan and Robert Shackleton
Congressional Budget Office

The comments made in this presentation reflect the views of the author and should not be attributed to the Congressional Budget Office
<table>
<thead>
<tr>
<th>Research on Climate Change Has Been a Two-Way Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Analysts have taken cues from policymakers about concerns</td>
</tr>
<tr>
<td>▪ Policymakers have drawn on analysis in designing legislation</td>
</tr>
<tr>
<td>▪ Information needs created/complicated by</td>
</tr>
<tr>
<td>– Long-term and global nature of the policy</td>
</tr>
<tr>
<td>– Profound scientific and economic uncertainties</td>
</tr>
<tr>
<td>– Equity considerations</td>
</tr>
<tr>
<td>– Interaction between climate policies and other policies</td>
</tr>
</tbody>
</table>
Much Progress in a Short Time: A Few Examples

- Evolution in thinking about benefits
- Research on the potential consequences of free allocations have led to more interest in auctioning allowances

- Evolution in thinking about timing flexibility
 - Research on the efficiency advantages of a tax relative to a fixed cap prompted policymakers’ interest in flexible cap designs
 - Analysts have responded by considering alternative ways to build timing flexibility into cap-and-trade programs
More Progress Needed:
Some Information Needs in Key Areas
Benefits: Realistic Expectations About Potential Policy Outcomes

- Information on the relationship between U.S.—or developed countries as a whole—mitigation efforts and potential shifts in the distribution of climate outcomes
 - Implications for choice of stringency versus policy structure and creation of global incentives (e.g., contingent reductions, border adjustments, international offsets).

- Continued effort to integrate uncertainties and risks of catastrophic damages into benefit estimates
 - Implications for policy stringency and timing
 - Implications for policy design: mitigation and adaptation strategies
For Example: Effect of Uncertainty About Concentrations on Expected Temperature Has Implications for Policy Design

Expected Equilibrium Average Global Temperature (°C)
Aggregate Costs of U.S. Policy: Better Information on Some of the Key Drivers

- **Availability and cost of offsets**
 - Domestic: How reliable are existing estimates?
 - Accounted for 40% of reductions in initial 8 years of the policy in CBO analysis
 - Initial price estimate over 40% higher if no offsets
 - International
 - Best methods for achieving them? CDM, sector based approaches, technology standards in some countries?

- **Better treatment of the uncertainties associated with technology development and acceptance**
 - Nuclear
 - Carbon capture and storage
Distribution of Costs: Increased Focus on Costs Borne by Particular Groups

- **Burdens imposed on trade-exposed, energy-intensive industries**
 - Implications for production, employment, carbon leakage
 - Implications of policies designed to protect them: e.g., effects on leakage, implementation issues, spur comparable efforts, WTO?

- **Burdens imposed on low-income households**
 - Options for targeting compensation using existing mechanisms

- **“Fair” allocation to industries/firms**
 - Ability to identify winners and losers
Cost Containment Options: Increasingly Complex Options Have Been Considered

- Increased interest in providing flexibility in timing of reductions and decreasing price volatility
 - E.g., progression in Lieberman/McCain (S.280), Lieberman/Warner (S.2191), Manager’s amendment (S. 3036)

- Need to understand implications of different approaches—banking, borrowing (individual or aggregate), price floors and price ceilings for
 - Price volatility
 - Ability of firms to react to potential policy changes
 - Implementation
 - Certainty about long-term reductions
Conclusion:
No Analyst Left Behind!