

NASA In-Space Propulsion Systems Roadmap TA02 Low Thrust Panel

Dr. Scott Miller March 22, 2011

Key Overarching Messages for NASA In-Space Propulsion

- Continuous funding over a range of TRLs is required
 - Ensures a stream of technologies being matured for new mission insertion opportunities
 - Avoids perpetual start/stop and increased cost due to agency and program level priority changes
 - Balances near term evolutionary development with longer term revolutionary high payoff research
 - Review of relevance and progress of technology development programs at regular intervals ensures ongoing applicability
- Mission level requirements are critical when determining what technology to fund
 - Just because it is higher performance doesn't mean it makes sense to develop
 - There must be a mission level benefit to the user community
 - Decreased overall/life-cycle cost (taking into account NRE and infrastructure investments)
 - Mission enabling/enhancing

Key Overarching Messages for NASA In-Space (cont'd)

AEROJET

- Particularly for low thrust in-space propulsion, the user community includes NASA, DoD, and commercial
 - Thrusters are often used similarly by each community
 - Increased coordination between NASA and industry is required to minimize cost and increase program advocacy (common reqmts)
- Funding through qualification is becoming increasingly required unless there is a clear common cost benefit or mission level need
 - Many recent in-space propulsion technology programs have been "stalled out" at TRL 6 due to lack of cost/mission benefit
 - Primes do not want to increase risk in propulsion subsystems
- Even within NASA, technology infusion needs to be tightly coupled to mission needs and cost constraints
 - Avoid inevitable cost/schedule overruns due to development programs targeted either too early or inappropriately for insertion
 - Coupling by nature is not as tight for lower TRL efforts

Notice that all major points above include "cost" and "mission"

In-Space Propulsion Systems: Mission Enablers

AEROJET

A GenCorp Company

- Roadmap Comments
 - Can NASA really fund and complete all the applications and technologies identified? Do we need more prioritization and focus?

AEROJET

- A GenCorp Company
- Every chemical propulsion technology category includes the \$ designator indicating that improvements over the current SOA reduce cost/system complexity/improve system reliability
 - This is not true in every case (maybe any case) and should be revisited
 - Although the cost may be higher than the current SOA, it should still be minimized for technologies required to achieve NASA goals
- Focus should be on technologies that are (1) mission enabling/enhancing and (2) have use by industry for other applications
 - Is the technology a net positive at the mission level based on evaluation of cost, mass, performance, reliability? Ensure that realistic trades are performed, e.g. common propellant ACS.
 - Is there another use for the technology outside of NASA that can help control cost, risk, assured production
- Suggest adding columns to the evaluation table identifying (1) mission enabling/enhancing characteristics, including list of applicable missions, and (2) other industry applications

AEROJET

- MAX-C (\$3.5B)/Mars Sample Return (\$3.0B) Planetary Decadal Survey Flagship
 - MAX-C cost to NASA needs to be \$2.5B => cost reduction, partnering
 - Atlas V 531 launch vehicle required => launch mass limited
 - MAX-C and MSL cruise and descent propulsion monopropellant N2H4
 - MAV baseline propulsion solids for ascent with monopropellant ACS
 - Technical challenges: low payload fraction, landing survival, cold long-term environment
 - Early development required, MAV propulsion will be enabling (large benefit for increasing payload fraction)
 - Jupiter Europa Orbiter (\$4.7B) Planetary Decadal Survey Flagship
 - Affordability issue
 - Atlas V 531 launch vehicle required => launch mass limited
 - Orbiter propellant mass 2681 kg => JOI key driver for DM prop system
 - Large benefit for propellant mass savings (~40 kg of instruments already descoped) cost vs. mass trade
- Uranus Orbiter Probe (\$2.7B) Planetary Decadal Survey Flagship
 - Atlas V 531 launch vehicle required => launch mass limited
 - \$150M SEP stage enabling for mission 828 kg Xe at 4000 sec lsp (NEXT), Hall lower cost option
 - Orbiter propellant mass 1180 kg => UOI key driver, AMBR baselined (large benefit for propellant mass savings – cost vs. mass trade)

-AEROJET

- Comet Sample Return (\$800M) Planetary Decadal Survey New Frontiers
 - Atlas V 521 launch vehicle required => launch mass limited
 - S/C propellant mass 468 kg with NEXT, possible with chemical on larger launch vehicle (Atlas V 551) (cost/risk trade)
- Lunar Polar Sample Return (\$800M) Planetary Decadal Survey New Frontiers
 - Atlas V 531 launch vehicle required => launch mass limited
 - Chemical propulsion baselined, return payload can be increased with higher lsp for increased cost
- Various Earth Observation (\$200M-\$650M) Earth Science Decadal Survey
 - CLARREO, SMAP, DESTdynl, HyspIRI, SWOT, GRACE II, 3D Winds
 - Typical Delta II/Minotaur 4/Taurus II launch vehicle class
 - Chemical propulsion (hydrazine) baselined, payload can be increased with higher Isp for increased cost
 - Similar scenarios with Sun-Earth Connection spacecraft

- Human LEO/GEO/L1 (Human Exploration Framework Team - HEFT)
 - MPCV (Orion), monopropellant and storable bipropellant propulsion
 - Potential initial cryogenic propulsion stage
- Human Lunar Flyby/Landing (HEFT)
 - Cryogenic propulsion stage required, throttling for descent
 - SEP stage for cargo reduces launch vehicle size from 130t to 70t
- Human Near-Earth Asteroid (HEFT)
 - Cryogenic propulsion stage required
 - SEP stage for cargo reduces launch vehicle size from 130t to 70t
- Human Phobos/Mars (HEFT)
 - Cryogenic propulsion required, throttling for descent
 - Use of CH4 could tie to ISRU
 - SEP stage for cargo reduces launch vehicle size from 130t to 70t

AEROIE7

NASA In-Space Propulsion Systems Roadmap Mission Summary

• Key themes

-AEROJET

- Cost reduction
- Minimizing launch mass/maximizing payload mass
- Mission enablers
 - SEP stage for planetary flagship and human exploration
 - In-space cryogenic bipropellants for human exploration
 - Propellant management
 - Delta-V engines
 - Throttleability for ascent/descent
- Mission enhancers
 - NEXT/Hall thrusters for small body sample return
 - Higher performance storable biprop delta-V for planetary missions
 - Advanced monopropellant ACS for robotic and potentially human missions
 - Cryogenic ACS for human exploration
 - Space storable solids for planetary ascent
 - Nuclear thermal for human exploration

AEROJET

A GenCorp Company

• Technology Ranking – Group 1

Rank	Technology	Mission Applicability	Commercial/ Other Applicability	Comments
۱ Lo	Medium-high power electric propulsion (NEXT, Hall) w Thrust	 Uranus Orbiter Probe, Comet Sample Return (20kW) Human Lunar, NEO, Phobos/Mars (300- 600kW) 	 Earth orbit transfer stage (20-30kW) Common planetary transfer stage (20kW) 	 20-30kW demo becomes directly applicable to earth orbit and planetary transfer stage, scalable to higher power for human exploration Enabling for outer planet orbiter/descent probe missions Huge CONOPS IMLEO payoff for human NEO/ Phobos/Mars missions
2	In-space cryogenic propellant management	 All human missions beyond earth orbit (LOX, CH4, H2) 	 Potential commercial tug or crew vehicle 	 Common to low and high thrust propulsion
3	In-space cryogenic bipropellant delta-V engines	• All human missions beyond earth orbit (LOX, CH4, H2)	Potential commercial tug or crew vehicle	 Throttleability for ascent/descent missions Trade of H2/CH4 required (performance vs. mass/volume, ISRU)

AEROJET

A GenCorp Company

• Technology Ranking – Group 2

Rank	Technology	Mission Applicability	Commercial/ Other Applicability	Comments
4 Lov	Advanced storable bipropellant delta-V engines v Thrust	 Uranus Orbiter Probe Lunar Sample Return Earth Observation Missions Discovery Missions 	 GEO apogee burn commercial LEO drag maintenance/ maneuvering 	 AMBR, higher pressure engines Large marginal payload increase for 1.5-6% lsp increase for high delta-V missions
5 Lov	Advanced monopropellant ACS (HAN, AF-M315E, ionic liquids)	 MAV ACS Higher performance/ better packaging ACS for human exploration vehicles 	 ACS for commercial and government spacecraft Less toxic propulsion for MDA applications Small spacecraft requiring low toxicity propulsion 	 40-50% density-lsp advantage over hydrazine plus lower freezing point Lower toxicity for easier integration Benefit for smallsats with minimal available volume High temperature oxidation-resistant materials development required
6 Lov	In-space cryogenic bipropellant ACS engines v Thrust	• All human missions beyond earth orbit (LOX, CH4, H2)	Potential commercial tug or crew vehicle	•Trade of H2/CH4 required (performance vs. mass/volume, ISRU) • Trade of cost/mass/ performance vs. storable monoprop/biprop required

AEROJET

A GenCorp Company

• Technology Ranking - Group 3

Rank	Technology	Mission Applicability	Commercial/ Other Applicability	Comments
7	Space storable solid propellant rockets	 MAV delta-V Sample return delta-V 		 Key issues are landing survivability and storage environment
8	Nuclear thermal propulsion	• Human missions to NEO, Phobos, Mars		 NTR for NEO provides minimum number of mission elements and IMLEO Long history dating to 1950's ~10 years development required
9 Lov	Low TRL (1-3), high payoff propulsion v Thrust	Potentially all NASA missions	• Numerous applications depending on technology performance and cost	Required to enable a robust technology portfolio for future missions

AEROJET

A GenCorp Company

- In-space low thrust investment recommendations
 - SEP high power Hall and ion thruster systems (enabling/enhancing)
 - Logical extension to existing technology development programs (NEXT, HPPS, etc.)
 - Demo and system qualification for planetary flagship missions
 - Follow on scaled development for SEP cargo stated for human exploration
 - Power distribution/management and power processing units are challenging
 - Non-NASA applications in orbit raising and transfer stages
 - Advanced storable bipropellant delta-V engines (enhancing)
 - Large marginal gain in payload for 1-2% Isp increase for large delta-V missions such as outer planet orbiters and sample return
 - Logical extension to existing AMBR program (higher performing and lower cost than current SOA) and higher pressure technology roadmap
 - Non-NASA applications in GEO apogee engines, LEO delta-V engines
 - Advanced monopropellants for ACS (enhancing)
 - Potential higher performing, higher density, lower toxicity, lower temperature propellant than hydrazine
 - Multiple development paths low/high pressure, HAN blends/AF-M315E/ionic liquids
 - High combustion temperature challenges for materials and catalyst
 - Non-NASA applications in spacecraft ACS, MDA, and DoD/DARPA/commercial smallsats

Summary

- In an environment of flat to decreasing budgets, life cycle cost reduction and mission enablement/enhancement are the key factors
- Ensure strong coupling to missions and mission level requirements
 - Resist the urge to fund "a little bit of everything"
 - But do fund a consistent level of low-TRL high payoff technologies
- Partner with industry where applicable for increased advocacy and reduced costs
- Key in-space propulsion technologies
 - High power electric propulsion
 - In-space cryogenic bipropellant propulsion
- Key in-space low thrust propulsion technologies
 - SEP high power Hall and ion thruster systems
 - Advanced storable bipropellant delta-V engines
 - Advanced monopropellants for ACS