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After 40 years of progress in composites

research

Commercial aircraft are a reality
Defense aerospace composites are

pervasive

The world-wide failure analysis proved to no
comprehensive failure model has been

developed to date
Yet we design successfu

We do so with significant
approaches based on ex

ly
y conservative
nerimental tests
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Boeing 787 Composite Structure
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What has Changed in 40 years?

Computational power has increased by a factor
of 10,000,000,000 since 1970, the year of the
first flight of composite structure — F-111
horizontal stabilizer

Certification of composite materials and
structures is dominated by experiments aided by
analysis

Once certified, materials changes are
economically impossible

We have the computational power to change the
paradigm
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PMMS overall goals
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Molecular Modeling for Polymer Matrix Structure
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Homogenization in Modeling Composite Structure
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Dehomogenization in Modeling Failure
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PMMS Center Approach
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Boeing-Purdue Atoms to Aircraft
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Uncertainty quantification in model validation

Local variations in fiber volume fraction explains experimental
variations in fracture angle
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Quantification of margins and uncertainties
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Materials Modeling and simulation vision

A computational/experimental approach to:

Simulation driven materials and structures certification
Demonstrate a significant reduction in the number of
experiments needed for certification via simulations with
rigorous uncertainty quantification and validation

Simulation driven materials and structures design
Enhance the predictive capabilities of our modeling effort
driven by two goals:

)Improve accuracy certification models (narrower margins),
i)Design of new materials and structures with improved
performance
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What are the benefits?

 Significant reduction in the cost of materials
development

« Rapid certification of new materials innovations

« Significant reduction in the cost of new materials
certification

 Insertion of new materials innovations in existing
aerospace structures once barred by certification
Costs

» $100 million shift in certification costs
* More platforms certified to meet specific needs

UNIVERSITY
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Pervasive composites knowledge and learning

Anisotropy and heterogeneity are the norm
Robust prediction capabillity

Manufacturing science simulation

Active models and data in archival publications
Virtual laboratories: “Connect, click and control”
Internet based learning

Composites communities of learning
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NASA Perspectives

NASA serves two masters: Space and Aeronautics

The technology issues are not the same for both:

Space missions require unique solutions and
missions involve “special environments.”

Aeronautics is pervasive: 28,600 new aircraft will be
needed in the next 20 years at $2.84 billion.

Human safety is a central issue for both.
The economics and technology drivers are different, but:
The engineering technology is common to both.

The materials systems and structural configurations
are drawn from the same industrial base.
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Criteria

Would the technology provide game-changing,
transformational capabilities in the timeframe of
the study?

What other enhancements to existing capabilities
could result from development of this
technology?
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Inter-related fields

Materials:
Lightweight structures
Computational design materials
Flexible material systems
Environment
Special materials

Structures:
Lightweight concepts
Design and certification
Reliability and sustainment
Test tools and methods
Innovative multifunctional concepts

22

Cross-cutting:
NDE and sensors
Model-based certification
Loads and environments

Manufacturing
Manfg. processes
Intelligent integrated Mfg.
and cyber physical syst.
Electronics and Optics
Sustainable Mfg.
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Micro Design Models

Develop first-of-kind life prediction methods for thin metallic materials and
PMC damage progression models. Lightweight Composite Overwrapped
Pressure Vessel with thin metallic liners.

Understanding PMC microcracking, fiber failure and their influence on
damage progression. Needed to design composites that retard permeability.
Human and Science Exploration.

TRL 3-4; No fracture mechanics methods for life assessment of thin metallic
liners. Little understanding of PMC microcracking and progression in
extremely constrained configurations. Microcracking currently a constraint on
composite tanks. Thin liner model by 2013 and robust modeling by 2015.
Microcracking damage progression model by 2015

UNIVERSITY
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Modeling and Simulation Advancements

PHYSICS BASED LAMINA MODELS
Lamina materials models. Design of complex multifunctional or hybrid composites.
All Missions

TRL 3-5; Design practices are ad-hoc and rely on extensive testing of specific
configurations. Develop analyses of critical interfaces by 2015

MOLECULAR DESIGN MODELS
Design and produce PMC resin with predicted enhanced constitutive properties.
Proof of concept for computational design of structural PMCs. All Missions

TRL 2-3; Predictive capabilities for PMC properties in early stage. Capabilities
maturing 2020 to 2025.

ATOMISTIC DESIGN MODELS

Design and produce simply alloy with predicted enhanced constitutive properties.
Proof of concept for computational design of structural alloy. All Missions

TRL 2-3; Predictive capabilities for alloy properties are in very early stage.
Capabilities maturing 2020 to 2025

UNIVERSITY
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Design and Certification Methods

Virtual Digital Certification

Systematic validation and verification (V&V) of models of pristine and
degraded structure at all scales in the building block development
pyramid with Test Tools and Methods (2.2.4d). Reduction of costly
physical testing, improved confidence for combined environments
that cannot be simulated in test. All Missions

TRL 2; Ongoing efforts to incorporate realistic physics to improve
reliability and ease of structural analysis techniques at NASA and
elsewhere. Test validation of large scale response and damage
progression predictions. Development of relevant criteria for
certification.
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Model-Based Certification and Sustainment

PHYSICS BASED DESIGN MODELS

Physics-based multiscale modeling that are validated (coupled) with macro /
micromechanical scale test measurements and NDE.

Significant weight savings for primary structure and lower building-block test

costs. All Missions

TRL2-4, Linear models are standard practice, nonlinear response models
used in special cases, a variety of failure models (both empirical and
theoretical) exist but no comprehensive multi-scale architecture exists.

Varies with application (e.g., predictive design allowables, shell collapse
predictions.

UNIVERSITY

26




Manufacturing Processes

Smart Materials Production

Development/creation of new manufacturing methods.
Adaptability of structures, health monitoring and self-healing.
TRL 3 Limited NASA activity, generally led by industry and academia

Significant long-term effort for realization of production ready
processes

UNIVERSITY
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