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Education and Employment

• Education

─ PhD, Low Temperature Physics, Purdue 1966

─ NBS/NRC Postdoctoral Fellow, 1966-1968

• Professional Employment

─ Physicist and project leader, NBS/NIST, 1968-2009

─ Leader, Cryogenic Technologies Group, 1995-2009

─ Appointed NIST Fellow, 2008

─ Retired from NIST in 2009

─ Working for NIST half time under contract
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Personal Research Areas

• Millikelvin Refrigeration (10 mK to 200 mK)

─
3He-4He dilution refrigerator, modeling & experiments

─ Kapitza thermal boundary resistance

─ Johnson noise thermometry

• Cryocoolers

─ Stirling and pulse tube cryocoolers (4 K to 150 K)

─ Joule Thomson cryocoolers (4 K to 200 K)

─ Microcryocoolers (77 K to 200 K)

• Cryogenic Material Properties

─ Thermal conductivity, specific heat, thermal contact

─ NIST database (www.cryogenics.nist.gov)
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Outputs

• Publications

─ >160 papers in open, refereed literature

─ 8 invited book chapters on cryocoolers

• Short courses (~30)

─ UCLA: 5-day course on cryocoolers (1981-1998)

─ NATO Advanced Study Institute: 1990, 2002, 2004

─ NASA, Air Force, KAIST, KIMM, Georgia Tech

─ Cryogenic Society of America (1/year since 1997)

• CRADAs with private industry funding

─ About 2-3 per year

─ Medical, gas liquefaction, sensor cooling, energy
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Awards and Recognition

• Plenary lectures at international conferences

─ 10 ( 3 with > 1000 attendees)

• 1987, 1999, and 2001, Best Paper Award at Cryog. Eng. Conf.

• 1990 R&D 100 Award for 1st cryocooler with no moving parts

• 1995: DOC Silver Medal for advanced refrigeration systems

• 1999: J&E Hall Gold Medal, Institute of Refrigeration for 

pioneering work on pulse tube cryocoolers

• 2003: DOC Gold Medal for technology transfer in advanced 

cryocoolers

• 2009: Samuel Collins Award from the Cryogenic Engineering 

Conference for contributions to cryogenics
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Benefits of Cryogenic Temperatures 
(Applications)

• Preservation of biological material and food

• Densification (liquefaction & separation)

• Quantum effects (fluids and superconductivity)
─ Low dissipation (superconductivity)

─ High-precision metrology (atomic parameters)

─ Action over a distance (fast response)

• Low thermal noise
─ Electromagnetic 

─ Electronic

• Low vapor pressures (cryopumping)

• Property changes (permanent and temporary)

• Tissue ablation (cryosurgery)
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Enabling Cryogenic Applications for NASA

• Preservation of biological material and food

• Densification (liquefaction & separation)

• Quantum effects (fluids and superconductivity)
─ Low dissipation (superconductivity)

─ High-precision metrology (atomic parameters)

─ Action over a distance (fast response)

• Low thermal noise
─ Electromagnetic 

─ Electronic

• Low vapor pressures (cryopumping)

• Property changes (permanent and temporary)

• Tissue ablation (cryosurgery)



Densification
Liquid Hydrogen and Oxygen Rockets
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Saturn-V

• Properties:

• H2:

liq = 0.071 g/cm3

liq/vap = 866

• O2:

liq = 1.14 g/cm3

liq/vap = 877

1950 1960 1970 1980 1990 2000 2010

Year

Sputnik I

Apollo 11

moon landing

Space Shuttle

H2 and O2

• 1.8x106 kg LOX

• 5.0x104 kg LH2
Advantage of

cryogenics
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Superconductivity
Magnetic Resonance Imaging (MRI)

• 1.5 T Superconducting magnets

• 1 W at 4 K

• Non-magnetic regenerators

• >7000 4 K cryocoolers since 1995

Cumulative number of MRI

superconducting magnets sold

Tumor
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HTS Superconducting Motors

Drawing courtesy: American Superconductor Corporation

35 K to 50 K



Superconducting Machines for Aircraft

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 11

10,000 rpm gas turbine

and HTS generator

3000 rpm HTS motors

and fans

NASA plans for 2035

Artist drawing courtesy of NASA/Glenn

Cryocoolers required:

• 3-10 kW at 50-60 K 

• 30% of Carnot

• 3 kg/kW input

Cryocoolers (desired)



3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 12

Low Thermal Noise
Microcalorimeters (Bolometers)
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• Root-mean-square energy fluctuations ~ (kb T2 C)1/2

• For T = 0.1 K, C = 10 pJ/K, DE ~ 10 eV

• Need to integrate a thermometer into C 

several possibilities, such as transition-edge sensors

Courtesy: J. Ullom, NIST

Very low at low temperatures

Good for detecting X-rays
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Superconducting Transition-Edge Sensor
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Superconducting Transition-Edge Sensor

Resolution:

15 eV out of 1.5 keV

130 eV conventional
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Atmospheric Infrared Imaging

Mean Surface Air Temperature

AIRS data, January 2003

AIRS Pulse Tube

Cryocoolers (2)

Earth Observing System (EOS)

• 1.2 W @ 55 K

• 60 W input

• TRW

• May 2002 Launch
airs_surface_temp1_full Jan03.jpg

Airs_cut.tif

Low thermal noise leads to low dark current in IR sensors
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Infrared and X-Ray

Space Telescope Missions

Why infrared?
• Cold universe

• Obscured regions

• Dust emissions

• Molecular spectral lines

• Highly redshifted universe

Why X-Ray?
• Detect dark matter

• Test gravitational theory

• X-rays around black holes

• Elements in universe

Only 4% of universe

mass seen as visible
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Cryogenics – An Enabling Technology

Supercondtree.jpgSource: ISTEC, Tokyo, Japan
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Spectacular =

• high resolution

• high precision

• high sensitivity

• high power density

• low power

• low noise

Cryogenics

Enabling

technology
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Balancing Act

Cryocooler Research

Goal

Reduce disadvantages

(Cryocooler invisible to user)



Cryogenic Systems
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Roadmap Topics

• Insulations

─ Multi-Layer Insulation (MLI)

─ Foams and aerogels

─ In situ insulations (lunar or Martian regolith)

─ Structural supports (composites)

• Low Temperature Radiators

─ Flexible and deployable

─ 50 K state of the art; 20 K desired in 8-10 yrs.
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Passive Thermal Control



Insulations
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MLI (60 layers)

Perlite Powder

Opacif ied Beads

Aerogel Beads

Cold Vacuum Pressure (torr)
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Need for hybrid

Polyurethane

foam

Data of:

J.E. Fesmire, S.D. Augustynowicz, S. Rouanet,

Adv. Cryogenic Engineering 47 (2002), pp. 1541-1548

Martian CO2 atmosphere



Cryogenic Radiators

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 21

From: F. Roush and T. Roberts, Cryocoolers 14, (2007), pp. 11-20

Average space-

operating radiators



Roadmap Topics

• Small 20 K Cryocoolers for Liquid Hydrogen

─ 5 – 20 W at 20 K for long term ZBO storage

─ Reduce specific power, mass, and vibration

─ Pulse tube cryocoolers

 Improved regenerator materials

 Low temperature flow rectification for DC flow

 Reduce flow nonuniformities in larger systems

─ Turbo-Brayton cryocoolers

 Higher effectiveness and lower mass recuperators

 Low leakage and bypass rates with hydrogen or helium
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Active Thermal Control
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Cryocooler Applications

Not addressed

In draft report



Cryocoolers in Space
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2010 Data

Cryocooler

type

Bearings Quantity Run time

(hours)

Failures

Turbo-

Brayton

Gas 1 59,000 0

Stirling Flexure

+ 1 gas

25 16,000-

112,000

2

Pulse tube Flexure 12 9,000-

107,000

0

Joule-

Thomson

None
(sorption comp.)

2 6,000 0

Data from Ron Ross, JPLAll at T > 60 K except JT



Cryocooler Specific Power
(Watts input per watt of net refrigeration power)
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From: F. Roush and T. Roberts, Cryocoolers 14, (2007), pp. 11-20

Space-like

cryocoolersCurrent SOA

Draft Roadmap

180 W/W @ 20 K

7.8 % of Carnot

Draft roadmap goal

100 W/W @ 20 K

14 % of Carnot



Roadmap Topics

• High Power Liquefiers

─ From gas produced by ISRU (H2, O2, and CH4)

─ Low temperature radiators for gas precooling

─ High pressure electrolysis system for compressor

─ Need for transition from industrial to space

• Cryocoolers for Science Instruments

─ 20 mK adiabatic demagnetization refrig. (ADR)

 For cooling TES detectors for X-ray astronomy

 Need for improved paramagnetic materials (for higher Th)

─ 2 K cryocoolers for precooling ADR

─ 6 - 10 K for As:Si IR detectors; 35 K for HgCdTe 
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Active Thermal Control, p. 2
Not addressed in draft



Roadmap Topics

• Component Development

─ Cold compressors, pumps, and valves, bearings

─ Need for thermal expansion matching over wide T

 Initial testing at 300 K, but final operation at 100 K or less

─ Subcooling technology for longer hold times

─ Subcooling for densified propellants

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 27

Active Thermal Control, p. 3

Not addressed in draft



Roadmap Topics

• Shields

─ Passive and active

─ Flexible materials

• Heat Transport

─ Heat rejection from cryocooler compressors

─ Heat pipes and loop heat pipes

─ Heat switches (for T < 10 K) for ADR systems

• Staging

• Superconductors (low and high T)

─ Motors, magnets, and science missions
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System Integration



Summary (Gaps and Challenges)

• Technology gaps

─ Cryogenics for ZBO and liquefaction of O2 and CH4

─ Technology path for cold compressors

 Must operate over wide temperature range (100 K – 300 K)

 Cryogenic materials properties (thermal expansion matching)

• Top Technical Challenges (Priorities)

─ Reducing mass of cryocoolers

 Compressor mass for pulse tube cryocoolers

 Recuperative heat exchanger for Brayton cryocoolers

─ Increasing cryocooler efficiency

─ Lightweight insulations in a wide range of atmospheres

─ Flexible radiators

─ Heat transport over long distance (heat pipes, fluid pumping)
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Summary (Expertise and Capabilities)

• NASA expertise and capabilities

─ Overall system studies

 Provide component requirements

─ Insulations (Kennedy)

─ Adiabatic demagnetization refrigerators (Goddard)

─ Cryocoolers (JPL, Ames, Goddard)

─ Radiators

• Utilize expertise at other institutes

─ Air Force (IR sensor cooling, cryocooler testing)

─ NIST (cryocooler modeling, concepts, component testing, material 

properties)

─ Private industry (expertise in flight hardware)
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Questions?
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Thank you



Recuperative Cryocoolers
(Steady Flow)
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