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Education and Employment

* Education
- PhD, Low Temperature Physics, Purdue 1966
_ NBS/NRC Postdoctoral Fellow, 1966-1968

* Professional Employment
— Physicist and project leader, NBS/NIST, 1968-2009
- Leader, Cryogenic Technologies Group, 1995-2009
— Appointed NIST Fellow, 2008
- Retired from NIST in 2009
— Working for NIST half time under contract
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Personal Research Areas

* Millikelvin Refrigeration (10 mK to 200 mK)
- 3He-*He dilution refrigerator, modeling & experiments
- Kapitza thermal boundary resistance
— Johnson noise thermometry

* Cryocoolers
— Stirling and pulse tube cryocoolers (4 K to 150 K)
— Joule Thomson cryocoolers (4 K to 200 K)
— Microcryocoolers (77 K to 200 K)

* Cryogenic Material Properties

- Thermal conductivity, specific heat, thermal contact
- NIST database (www.cryogenics.nist.gov)
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Outputs

* Publications
- >160 papers in open, refereed literature
— 8 Invited book chapters on cryocoolers

* Short courses (~30)
- UCLA: 5-day course on cryocoolers (1981-1998)
- NATO Advanced Study Institute: 1990, 2002, 2004
- NASA, Air Force, KAIST, KIMM, Georgia Tech
— Cryogenic Society of America (1/year since 1997)

* CRADAs with private industry funding
— About 2-3 per year
- Medical, gas liguefaction, sensor cooling, energy
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3/11/2011

Awards and Recognition

Plenary lectures at international conferences

-~ 10 ( 3 with > 1000 attendees)

1987, 1999, and 2001, Best Paper Award at Cryog. Eng. Conf.
1990 R&D 100 Award for 1st cryocooler with no moving parts
1995: DOC Silver Medal for advanced refrigeration systems

1999: J&E Hall Gold Medal, Institute of Refrigeration for
pioneering work on pulse tube cryocoolers

2003: DOC Gold Medal for technology transfer in advanced
cryocoolers

2009: Samuel Collins Award from the Cryogenic Engineering
Conference for contributions to cryogenics
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Benefits of Cryogenic Temperatures

(Applications)

* Preservation of biological material and food
* Densification (liguefaction & separation)

* Quantum effects (fluids and superconductivity)
— Low dissipation (superconductivity)
— High-precision metrology (atomic parameters)
— Action over a distance (fast response)

* Low thermal noise
- Electromagnetic
- Electronic

* Low vapor pressures (cryopumping)
* Property changes (permanent and temporary)
* Tissue ablation (cryosurgery)

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 6



Enabling Cryogenic Applications for NASA

* Preservation of biological material and food
* |Densification (liguefaction & separation)

* |Quantum effects (fluids and superconductivity)
— Low dissipation (superconductivity)

— High-precision metrology (atomic parameters)

— Action over a distance (fast response)

* |Low thermal noise
- Electromagnetic
- Electronic

* Low vapor pressures (cryopumping)
* Property changes (permanent and temporary)
* Tissue ablation (cryosurgery)
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Densification

Liquid Hydrogen and Oxygen Rockets

Year
1950 1960 1970 1980 1990 2000 2010
| | | | | | b
I. Space Shuttle
Sputnik |
Apollo 11 * Properties:

* H,:
pPiq = 0.071 g/lcm?
pliq/pvap = 866

moon landing

Saturn-V

H, and O,
* 1.8x10° kg LOX
* 5.0x10% kg LH,

: I ; 02

# | p=1.14glcm?

| | PiddPuap = 877« Advantage of
cryogenics
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Superconductivity

Magnetic Resonance Imaging (MRI)
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superconducting magnets sold

« 1.5 T Superconducting magnets

l1Wat4K

« Non-magnetic regenerators

* >7000 4 K cryocoolers since 1995 Aor
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HTS Superconducting Motors

Inherently quieter 35 K tO 50 K

Lower cost

Less than 1/2 of the size
113 of the weight

Higher net efficiency

HTS Motor Output
1e+5 T | ‘ | T 1

36.5 MW HTS Te+4
1e+3
Xle+2

Drawing courtesy: American Superconductor Corporation 5‘1 1
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Superconducting Machines for Aircratft
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i Cryocoolers required:

+ 3-10 kW at 50-60 K
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and fans
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Artlst drawing courtesy of NASA/Glenn
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Low Thermal Noise

Microcalorimeters (Bolometers)

Good for detecting X-rays
Photon Thermometer

E J [

)
S
Photon — Heat © =
b C
o a2 \
C G Thermal
Heat Conductance .
Capacity 77777 Time

Very low at low temperatures

- Root-mean-square epérgy fluctuations ~ (k, T? C)/2
*ForT=0.1K,C=10pJ/K, AE ~10 eV

* Need to integrate a thermometer into C Courtesy: J. Ullom, NIST

several possibilities, such as transition-edge sensors
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Superconducting Transition-Edge Sensor

Transition-Edge

Sensor (TES) SQUID
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Courtesy:R. Harris, NIST
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Atmospheric Infrared Imaging

Low thermal noise leads to low dark current in IR sensors
Earth Observing System (EOS)

Airs_cut.tif

Mean Surface Air Temperature
AIRS data, January 2003

AIRS Pulse Tube
Cryocoolers (2)

«1.2W @ 55K

* 60 W Iinput

* TRW

* May 2002 Launch
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Infrared and X-Ray
Space Telescope Missions

The Electromagnetic Spectrum

[ Radio | [ Microwave ) ( Infrared | [ Visible ] [Ultraviolet | [ X-ray | (Gamma Ray |

. SETTT 1 — 107
About the size of;

&

Buildings Graing of Sugar Pradorosns Bacteria Masleculns Atormic Nuclkel

Only 4% of universe

Why infrared? mass seen as visible | Why X-Ray?

 Cold universe * Detect dark matter

* Obscured regions * Test gravitational theory

* Dust emissions  X-rays around black holes
* Molecular spectral lines * Elements in universe

* Highly redshifted universe
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Cryogenics — An Enabling Technology
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Balancing Act

Advantages _ Disadvantages
of cryogenics %  of cryocoolers
'.:—:_'-;%*“f'——“ = E:-f:—-t?-}i;—--'%-]i;;}_‘:a
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Quantum effects| ' _|Cooldown time
/|[Low thermal noise Vibration |
Low vapor pressure EMI
" [Property changes Heat rejectlon
«[__Tissue ablation [ _Cost P
S _—;>—3— T
— )
IH-_::__ —— 1 Scale- ison2.cd
3/11/2011 T

Cryocooler Research

Goal

Reduce disadvantages
(Cryocooler invisible to user)
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Cryogenic Systems
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W —>|Cryocooler Qcond

I\ lQnet ll

Cold reservoir \

Qinsul

Reservoir: Q_net 3 Qcond 18 Qinsul
Cryocooler: W = psQnet Ps = cryocooler specific power

Rad|at0r: Q.O: W + Q-net Refrigl7c.cdr
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Roadmap Topics

Passive Thermal Control

* |nsulations
— Multi-Layer Insulation (MLI)
- Foams and aerogels
— In situ insulations (lunar or Martian regolith)
— Structural supports (composites)

* Low Temperature Radiators
— Flexible and deployable
- 50 K state of the art; 20 K desired in 8-10 yrs.

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 19



Insulations
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Cryogenic Radiators
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From: F. Roush and T. Roberts, Cryocoolers 14, (2007), pp. 11-20
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Roadmap Topics

Active Thermal Control

* Small 20 K Cryocoolers for Liquid Hydrogen
- 5-20W at 20 K for long term ZBO storage
- Reduce specific power, mass, and vibration

— Pulse tube cryocoolers
= Improved regenerator materials
= Low temperature flow rectification for DC flow
= Reduce flow nonuniformities in larger systems

— Turbo-Brayton cryocoolers
= Higher effectiveness and lower mass recuperators
= Low leakage and bypass rates with hydrogen or helium
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Cryocooler Applications

| & Not addressed
In draft report
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Cryocoolers in Space

2010 Data
Allat T> 60 K except JT Data from Ron Ross, JPL
Cryocooler| Bearings Quantity | Run time | Failures
type (hours)
Turbo- Gas 1 59,000 0
Brayton
Stirling Flexure 25 16,000- 2
+ 1 gaS 112,000
Pulse tube Flexure 12 9,000- 0
107,000
Joule- None 2 6,000 0
Thomson | (sorption comp.)

3/11/2011 NASA Technology Roadmap, Cryogenic Systems, 2011 24



Cryocooler Specific Power

(Watts input per watt of net refrigeration power)

10000

Current SOA

Draft Roadmap
180 W/W @ 20 K
7.8 % of Carnot £

1000

W

ecific Power (
>
Q

Sp
\o\

Draft roadmap goal
100 W/W @ 20 K
14 % of Carnot

0 20 40 60 80 100 120 140 160

Cold End Temperature (K)

From: F. Roush and T. Roberts, Cryocoolers 14, (2007), pp. 11-20
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Roadmap Topics

Active Thermal Control, p. 2

Not addressed in draft

* High Power Liguefiers /
-~ From gas produced by ISRU (H,, O,, and CH,)
- Low temperature radiators for gas precooling
— High pressure electrolysis system for compressor
— Need for transition from industrial to space

* Cryocoolers for Science Instruments

- 20 mK adiabatic demagnetization refrig. (ADR)
= For cooling TES detectors for X-ray astronomy
* Need for improved paramagnetic materials (for higher T,)

— 2 K cryocoolers for precooling ADR
- 6-10 K for As:Si IR detectors; 35 K for HgCdTe
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Roadmap Topics

Active Thermal Control, p. 3

Not addressed in draft

* Component Development
— Cold compressors, pumps, and valves, beafings

- Need for thermal expansion matching over wide T
= |nitial testing at 300 K, but final operation at 100 K or less

— Subcooling technology for longer hold times
— Subcooling for densified propellants
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Roadmap Topics

System Integration
* Shields

— Passive and active
— Flexible materials

°* Heat Transport
- Heat rejection from cryocooler compressors
— Heat pipes and loop heat pipes
— Heat switches (for T < 10 K) for ADR systems

* Staging
* Superconductors (low and high T)
- Motors, magnets, and science missions
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Summary (Gaps and Challenges)

* Technology gaps
- Cryogenics for ZBO and liquefaction of O, and CH,

— Technology path for cold compressors
= Must operate over wide temperature range (100 K — 300 K)
= Cryogenic materials properties (thermal expansion matching)

* Top Technical Challenges (Priorities)

- Reducing mass of cryocoolers
= Compressor mass for pulse tube cryocoolers
= Recuperative heat exchanger for Brayton cryocoolers

— Increasing cryocooler efficiency

— Lightweight insulations in a wide range of atmospheres
— Flexible radiators

— Heat transport over long distance (heat pipes, fluid pumping)
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Summary (Expertise and Capabilities)

* NASA expertise and capabillities

— Overall system studies
= Provide component requirements

— Insulations (Kennedy)

— Adiabatic demagnetization refrigerators (Goddard)
— Cryocoolers (JPL, Ames, Goddard)

- Radiators

* Utilize expertise at other institutes
— Air Force (IR sensor cooling, cryocooler testing)

— NIST (cryocooler modeling, concepts, component testing, material
properties)

— Private industry (expertise in flight hardware)
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Questions?

Thank you
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Recuperative Cryocoolers
(Steady Flow)

Heat
exchanger
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Regenerative Cryocoolers

(Oscillating Flow)
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