TA 13 Ground and Launch Systems Processing
Roadmap Panel Discussion

Bill Findiesen
William.h.findiesen-jr@boeing.com
714-317-3134
Boeing, Huntington Beach
March 24, 2011
Discussed in this briefing

From NASA Draft Ground and Launch Systems Processing Roadmap for Technology Area 13
LCC are determined during the conceptual design phase

- Shuttle ground systems developed piecemeal, after vehicle design was complete
 - clean-sheet operations optimizations were not possible
 - costs were high - $
- Process optimization is very difficult due to:
 - constraints imposed by the vehicle design
 - resistance of existing organizations and procedures.
- Major LCC are difficult to reduce later in the development life cycle.

According to the MSFC Engineering Cost Office:

- “80% of Life Cycle Costs (LCC) are determined by decisions made during the conceptual design stage.
- The best detailed design engineering will not correct a flawed concept selection.”

4 From page 14 of the 3/12/02 Project Cost Estimating and Analysis pitch presented at the recent 2nd Gen PP&C training session.
All Phases of Operations Considered

- Maintenance Mgt & Control
 On-Time Vehicle Availability

- Operations Control & Management
 Real-Time Relevant Data

- Flight Operations
 One system for ground & flight operations

- Ground Support Equipment & Tooling
 Improved Maintenance Performance

- Interactive Electronic Media
 Focused Tasks
 Real-Time Revision Updates

- Portable Maintenance Aids
 Improved Safety & Quality
 Hazard De-Confliction

- Task Scheduling & Tracking
 Increased Vehicle Availability
 Increased efficiency

- Facility Maint & Control
 Optimized Utilization

- Mission/Flight Planning
 Automation, Cost Savings

- Spares & Inventory Control
 Accurate Forecasting, Increased Vehicle Availability

- Early Checkout @ Customer Facility

Disparate ground operations create challenges for ground systems.
ACCMS Benefits Relative to Shuttle Baseline

- STAS 3B studies estimated annual savings of $250M/Yr
- Technicians represent 19% of the total ground operations task
- Infrastructure & Mgt is 42% of current Shuttle Operation
- ACCMS targets reductions through automation and integration of disparate systems
- Common ground systems reduce O&S costs for infrastructure by as much as half

ACCMS Could Provide A Reduction In Ground Infrastructure & Support of @ 30-40%

2011 Comment: Benefits of system integration were difficult to quantify, but studies did point to significant benefits
Mainframe-Based Systems—SPDMS
- Automated Line Replaceable Unit Tracking System (ALRUTS)
- Automated Management Document Control System (AMDCS)
- Automated Ordnance Control System (AOCS)
- Automated Support Requirements System (ASRS)
- Computer Aided Planning and Scheduling System (CAPSS)
- Document Accounting and Control System (DACS)
- Data Dictionary (DD)
- Deviation Index Logging System (DILS)
- Deferred Processor (DP)
- Information Management System (I/M)
- Integrated Operations System (IOS)
- Material Support System (MSS)
- Non-Conformance Data Interface (NCDI)
 - Operations and Maintenance Requirements and Specification Change Processing (OMRSCCP)
 - Operations and Maintenance Planning (OMRSP)
 - Operations and Maintenance Requirements and Specifications—Flow Planning (OMRSPF)
 - Operations and Maintenance Requirements and Specifications and Software Engineering Watch Assessment (OMRSRA)
- Problem Reporting And Corrective Action System (PRACA)
- Reports Processing Management System (RPMS)
- Shop Floor Control/Data Collection (SFC/DC)
- Shop Floor Control/Resource Tracking (SFC/RT)
- SPDMS Person-User Data System (SPUDS)
- Transaction Security Administration System (TSAS)
- Wire List Maintenance (WILMA)

COTS-Based Systems
- PSDI’s Maximo Computerized Maintenance Management System (CMMS)
- PeopleSoft’s Distribution and Manufacturing supply chain support system
 - Documentum’s Enterprise Documentation Management System (EDMS)
 - Schedule Publisher
 - WAD (Work Assignment Doc) Authoring and Validation Environment (WAVE)
- Integrated Client/Server Applications
 - Automated Support Requirements System—Client/Server (ASRS-CS)
 - Document Distribution System (DDLS)
 - Ground Processing Scheduling System (GPSS)
 - Operations and Maintenance Requirements and Specifications—Flow Planning Client/Server (OMRSPF-CS)
 - Shuttle Connector Analysis Network (SCAN)

Shuttle has many independent systems + manual processes

Ground Operations teams have been very creative about compensating shortfalls in vehicle operability
Baseline Management: ACCMS Operational Architecture

Cradle To Grave – ACCMS is involved throughout Lifecycle

Early capture and correlation of DATA is essential for **Basis of Certification** and validation of operational procedures and limits.
Automation & Integration of Current Independent Maintenance Systems

Objective: Annual Reduction in Operations Costs, Safety Enhancement, Increased Vehicle Availability

What: New Ground-System Technologies: state-of-the-art information systems & software technology with command & control systems.

How: Integration & Automation of vehicle health, scheduling, maintenance management, technical data, support equipment, logistics, and the technician:

- Real time planning & control
- Optimized scheduling Logistics
- Advanced human-machine interface
- De-confliction of hazardous operations
- Real-time diagnostic resolution,
- Focused maintenance procedures,
- Task accomplishment tracking, verification
- Validation of vehicle health

Mission Assurance, Launch Reliability and Safety Could Benefit Greatly from Integrated Ground Systems Technologies
<table>
<thead>
<tr>
<th>Technologies to Optimize the Operational Life-Cycle</th>
<th>Relative Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Storage, Distribution & Conservation of Fluids</td>
<td>Med</td>
</tr>
<tr>
<td>• Automated Alignment, Coupling, & Assembly Systems</td>
<td>Med</td>
</tr>
<tr>
<td>• Autonomous Command & Control for Ground and Integrated Vehicle/Ground Systems</td>
<td>Hi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental and Green Technologies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Corrosion Prevention, Detection, & Mitigation</td>
<td>Low</td>
</tr>
<tr>
<td>• Environmental Remediation & Site Restoration</td>
<td>Low</td>
</tr>
<tr>
<td>• Preservation of Natural Ecosystems</td>
<td>Low</td>
</tr>
<tr>
<td>• Alternate Energy Prototypes</td>
<td>Hi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technologies to Increase Reliability and Mission Availability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advanced Launch Technologies</td>
<td>Hi</td>
</tr>
<tr>
<td>• Environment-Hardened Materials and Structures</td>
<td>Med</td>
</tr>
<tr>
<td>• Inspection, Anomaly Detection & Identification</td>
<td>Hi</td>
</tr>
<tr>
<td>• Fault Isolation and Diagnostics</td>
<td>Hi</td>
</tr>
<tr>
<td>• Prognostics Technologies</td>
<td>Hi</td>
</tr>
<tr>
<td>• Repair, Mitigation, and Recovery Technologies</td>
<td>Med</td>
</tr>
<tr>
<td>• Communications, Networking, Timing & Telemetry</td>
<td>Hi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technologies to Improve Mission Safety/Mission Risk</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Range Tracking, Surveillance & Flight Safety Technologies</td>
<td>Low</td>
</tr>
<tr>
<td>• Landing & Recovery Systems & Components</td>
<td>Hi</td>
</tr>
<tr>
<td>• Weather Prediction and Mitigation</td>
<td>Low</td>
</tr>
<tr>
<td>• Robotics / Telerobotics</td>
<td>Hi</td>
</tr>
<tr>
<td>• Safety Systems</td>
<td>Hi</td>
</tr>
</tbody>
</table>

Discussed in this briefing
Key Needs for Ground Systems

• Provide capability that extends into the full range of prelaunch, launch, mission operations and post landing services in a more integrated manner.
 • The intent is to validate vehicle/payload interfaces early and carry that certification through to launch site.

• Checkout and control system may need to interface with design and lab test equipment as well.
 • Applications/test routines developed at the factory could be built on to perform prelaunch testing and launch.

• KSC doesn’t support mission ops on shuttle but should have a system which is capable of doing so in case it is needed for future vehicles.
 • This would include incorporation of mission planning, range tracking software and interfaces and communications capability.

• Additional needs:
 • post landing and support and refurbishment
 • scalable to handle small factory test to integrated launch ops.

• New technology using immersive HCI (Human-Computer Interaction), advanced simulation and modeling, intelligent software, smart sensors, etc. could enhance the control and monitor capabilities.

• Flexible systems that can interface with diverse payloads and vehicles
• Modularity of ground control and checkout systems to take advantage of new applications as they become available