Discussion of Intelligent Data Understanding, Autonomous Spacecraft Operations and On-board Computing

(TA11)

David P. Watson
dave.watson@jhuapl.edu
(240) 228-5902
Space Applications of Autonomy

Flight Systems
- Opportunistic Sensing
- Fault Management
- Event Response
- Coordination

Robotics
- Perception
- Mobility
- Manipulation

Operations
- Planning & Scheduling
- Routine Maintenance
- Anomaly Resolution

Science
- Pattern & Semantic Discovery
- Planning & Scheduling
APL Autonomy for Deep Space Missions

- **New Horizons (launch 2006; $470M)**
 - Pluto Mission, 9 year transit, 9hr communications latency, 36 hr encounter phase
- **STEREO (launch 2006; $210M)**
 - Solar science mission, twin vehicle deep space operations
- **MESSENGER (launch 2004; $330M)**
 - Mercury mission, 5 year transit, remote orbital operations

Flight Rule Sets:
- NEAR: 16
- STEREO: 140
- MESSENGER: 240
- New Horizons: 118

New Horizons Autonomy Testing
- 8 staff, 10 months
- Rule set mod for encounter phase
Model-based Autonomy R&D

Model-based Executive

- Plant Model
- Deductive Controller
- Control Sequencer
- Safe-hold & Earth Acq

Telemetry

- Commands
- State Estimates
- Configuration Goals

State Selection

- Mission Planning
- Clock

Activity Selection

- Safe-hold & Earth Acq

Model-based Autonomy R&D
Flying Advanced Autonomy

- Deep Space 1 Remote Agent Experiment (1999)
- EO-1 Autonomous Sciencecraft Experiment (2003)
- Other Proposed Efforts
 - New Millennium ST7 Mission
 - Mission Data System (JPL)
 - MESSENGER Autonomy Experiment
Principles of FM Autonomy

- **Understandability:**
 Understandability defines the ability to design, display and review the autonomy system such that non-software domain experts or system engineers can understand the design.
 - **Necessary for reviews:** FM is multi-disciplinary and need all subsystems understanding the ConOps to produce good designs
 - **Essential for future modifications:** Better context is key to making the right change and translating need into implementation

- **Flexibility:**
 Flexibility defines an ability to modify the design pre- and post-launch in parts without patching or complete code uploads.
 - **Speeds development and testing:** Decouples autonomy from FM; enables testing outside of nominal flight bounds.
 - **Eases burden on operations staff:** Situations demanding workarounds can be performed though on-board changes; ensures ability to go lights-out

- **Verifiability:**
 Verifiability defines the ability to exhaustively and rapidly verify the autonomy system.
 - **Prevent crunch in I&T testing:** Provides early on testing
 - **Ensure risk level:** Current testing may not find or see all problems
Uploadable Executable Specification Autonomy (ExecSpec)

- Domain Experts or system engineers draw state diagrams to represent desired behavior using interactive development environment (IDE)
- Design can be easily reviewed
- User-driven or user-scripted simulation
- Automatic Verification (NuSMV) based on project requirements
- Diagrams uploaded into the spacecraft (no code)
- On-board diagram interpreter
- Design can be further modified in real-time at any time pre- or post-launch (no patching or recompiling)
- Autonomy is visualized during test or flight by animating diagrams (same consistent interface from design to test to operate)
Understandability with ExecSpec Example
(RF Amplifier Diagram)

Benefit: Reviews can occur at the design level providing more eyes on the problem and therefore a better solution. No translation errors.
Spacecraft Autonomy: Some Thoughts

- Current state of practice will not scale to meet next generation challenges. Step change is needed.
- Autonomy can be viewed as an extension of Fault Management and G&C.
- Next generation autonomy will require significant cultural changes across the full spectrum of spacecraft systems engineering.
- There are, perhaps, lessons to be learned from commercial industry (e.g. automobile, SCADA).
- Verification and Validation is a significant issue.
TA11 Roadmap Comments

- **Top Technical Challenges**
 - Verification and Validation of Autonomous & Adaptive Systems

- **Technology Gaps**
 - Computing hardware between multi-core and quantum (e.g. analog pattern classification)
 - Case-based emphasis to parallel Model-based direction
 - Hybrid Discrete/Continuous model-based systems

- **High Priority Areas**
 - Languages, Tools, Training, and Testbeds for model-based programming

- **Alignment with NASA expertise & role**
 - Good alignment across multiple centers
Comments (cont.)

- Competitive Placement
 - Automotive Industry?
 - SCADA Industry?

- Game-changing Technology
 - Formal/Automated Software Validation

- Technology Near Tipping Point
 - Executable Specification

- Time Horizon
 - 5 to 10 year time horizon for adoption

- Value/Risk
 - Near Earth: Cost Reduction
 - Deep Space: Risk Reduction, Mission-enabling
Additional Comments/Ideas

- Significant overlap with TA04
 - Mirrors “robotics vs. autonomy” dichotomy in the community

- Multi-user Virtual Environments (MUVE) not mentioned in the collaborative work discussion.

- Machine Learning is mentioned, but not emphasized.
 - Possible role in model-based systems

- Need a taxonomy of models and a plan for “translation” or adaptation of models across engineering domains.

- Really need to recognize the cultural/training challenges associated with model-based design & development.
 - SysML probably won’t be enough