uQ, V&YV, large data and Predictive Numerical
Calculations

Leland Jameson

Division of Mathematical Sciences
National Science Foundation
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Wind tunnel tests of airfoils




~ Wind tunnels not infinite but some

kind of closed loop
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Yet another wind tunnel

Continuous splitter vane

\

Pressure - gradient
control slots

Guide vanes
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- Cooling
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i"“ ey
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—60-mesh screen.
30 - mesh turbuience ~reducing screens

Observation canopy

NACA Langley 74 ft. x 3 ft. low-turbulence pressure tunnel (1941).



The “Secondary Instability”

The physical experiment showed the existence of this
instability

Numerical calculations “confirmed” the existence of
this instability

But, both were wrong.



/

“What happened with the wind

tunnel test.

In 1989 the PhD thesis of Wai Sun Don at Brown showed
that wind tunnel tests of flow over a cylinder were
producing an artificial “secondary instability”. This
instability was widely believed to exist and was confirmed
by independent wind tunnel tests and low order numerical
calculations. Using spectral methods and a properly

formulated outflow boundary condition Don
showed that the instability went away. Later when the
length of the wind tunnel was increased the experimentally
observed instability also disappeared. The instability was

due to an acoustic wave interaction with the
wind tunnel wall.






Two more pictures of the same physics in the previous slide
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Given an Initial Condition that IS
mmetric, the calculation
maintains the symmetry.
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Inertial Confinement Fusion (ICF) is a promising direction in the pursuit
of a clean energy source. Accurate numerical calculation of the
Richtmyer-Meshkov mixing is critical to estimating if burn is achieved.

Polyimide,

217 millimatars in diamater
D-Tice,

1.9 millimelers in diameter

D-T gas,
1.74 millimeters in diameter

Beryllium doped with 0.9% copper,
2.16 millimeters in diameter

D-Tice,
1.9 millimeters in diameter

Figure 7. The best materials
for the outer (ablator) layer
are polyimide and benylium
doped with copper. The
ablator layer surrounds

a layer of solid deuterium-

D-T gas,
1.74 millimeters in diameter

A simulation of the the fiuid motion as a function of increasing temperature, pressure, and density
(a Richtmyer-Meshkov instability) in an imploding inertial confinement fusion capsule calculated
with an arbitrary Lagrange—Eulerian hydrodynamics code on ASCI Blue Pacific.

tritiurn (D-T) and an inner
core of D-T gas.
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“Supernova, as with ICF, have a multi-layer structure. As shocks

pass from layer to layer one observes shock induced mixing.

In its death throes
Supernova 19874
resembled an enormous
rmany-layered onion as
successively heavier
layers of fuel ignited
and burned.

Silicon
Carbon, Oxygen
Helium
Hydrogen

Supernova 1987A provided strong evidence of turbulence emanating from the
core of the exploded star because core materials were observed well before
they were predicted. The turbulence caused mixing among the layers and greatly
complicated the tidy “onion" model of dying stars. [Image reproduced from Muller
Fryxell, and Arnett, Astronomy & Astrophysics 251, 505 (1991).]




- umerical errors accumulate with increasing time and can eventually
dominate a calculation especially for long-time integration of ICF, Super-

novas, climate models, etc.

80

&
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o
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—The numerical error can produce
drastically different “physics”.

The following three frames show the final time mixing

region for a Richtmyer-Meshkov calculation. The

three frames show mixing regions with varying

amounts of small scale structure. The only difference

between the frame is that the numerical error

(dissipation in this case) decreases as one progresses
right



Here we visually examine the mix
~zone of an 11th order and a
2"d order Godunov method.

* One can see visually the n™ order WENO supports
much more structure for a given grid.

* Our goal as stated is to get away from eyeball norms.




nd Order Godunov at

256x1280.

b

o el




PLMDE




VWENO TO the 5’ oraerona grid o
vy 640 one can visually see

much more structure
° 9" Order WENO -
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Richtmyer-Meshkov Instability

Convergence Study (M = 4.46,4 = 0.2 em,t =50 ps) : Density

WENO 3rd WENO 5th

e Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46.6 = 0.2 em,t = 50 us) : Density

WENO 7rd WENO 9th

o Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46.6 = 0.2 em,t = 50 us) : Density

WENO 11st Spectral

o Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Letl's Challenge the code with a
ach 100 shock followed by a
reshock Using the 5t order option.

* Here we simply we want to demonstrate that with even
a mach 100 shock on the notch interface followed by a
reshock that the code runs. Below we see the mixing

7NONeA
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“How much error and what kind of
error is acceptable?

Transport of large-scale (low wave number) features
can be done with almost any scheme and one will
obtain an acceptable result.

Mixing at a fine scale requires a great deal of attention
to magnitude of the error and type

e Dissipation: clearly increased dissipation damps high
wave numbers and smooths the flow

e Dispersion: waves travel at different speeds. Does this
increase or decrease mixing or neither?



High order methods affect most the small scale structures in a flow and large
scale features such as location of peaks and valleys are calculated equally well
with low order schemes.

Amplitude vs Time
Aleshin et al. Shot G30E

Experimant

amplitude [cm]

Spectral (\WsD)
ALE (SWWW
HOG (JAG)
WWERC (WSE




Correctness or Numerical
ackson and G.

_ Calculations (with T.
Leseign 1994 and 1999)
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clectromagnetics. ror the simple
- Convection Equation Error is
Dispersive

Leaplop—Exacl. L2=0.2506" Grid=80 Tima sleps =8000

Q.7 a8 o B

FO4-Exacl. L2 Err=0.023433 Grid=80 Tima sleps =80300
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Computational-Mathematics-2007 Dear—
“Colleague Letter on Long-Time Behavior of
Numerical Methods

The number of degrees of freedom, in particular the number of time steps, for solving partial
differential equations grows as computational resources grow. EITOTS OTI numerical
artifacts that may be insignificant when the number of time steps
to solution is relatively small can dominate a calculation as this
number reaches the tens or hundreds of thousands. Such non-
physical artifacts can come in a variety of forms, from the
accumulation of numerical truncation error, round-off error,

uncertainty in physical parameter values, model uncertamt}, etc.
Theoretical error estimates containing constants that grow exponentially with time are not adequate
to address these effects. Further, as computational platforms grow in size with increasing numbers of
CPUs, the advent of commodity multi-core processors, and the increasing heterogeneity of
computing environments, increasing care must be paid to designing algorithms that are conducive to
such architectures. The trend in computational hardware is to have tens or hundreds of thousands of
processors with limited memory associated with each processor and nodes that contain clusters of

rocessors. It is critical that proposed numerical approaches take into account various latencies and

oad balancing issues that will certainly be encountered on such architectures. Such large calculations
produce very large data sets. Algorithms for the efficient analysis and visualization of very large data
sets on such modern architectures in order to uncover hidden correlations and structures are also of
interest. Above all, the physical correctness of the calculation is the most important issue. Arriving at
a physically relevant answer requires careful attention to the above issues as well as others.



// T e e
Large 3D code efforts should have at least 2

totally independent implementations

Physics: For complex systems, e.g., turbulence, not
everyone will agree on the physical model such as closure
models.

Numerics: For complex systems in 3 dimensions with
various complexities such as topological structure change,
not everyone will agree if one should use ALE, 2" Order

FD, WENO, ENO, 2" Order Godunov, spectral methods,
compact schemes, ...

Software: For large supercomputers, in my experience
pilers are not bug free for at least 2 years.

- Livermore and the Competitive

~ == ect Management should also be independent. i



-Summary: How many ways can we
get the wrong answer?

“Incorrect” physics, e.g., turbulence model
Incorrect implementation

Excessive dispersion with studying moving
phenomenon

Excessive dissipation when studying small scale
features

Immature compilers (less than 2 years old)
Staff with the wrong training

Compiler options...

Etc.



EStimating Rellability ofT Numery
~Results: -

It is Critical to know...

Dissipation:

e Alters the magnitude of the Fourier modes but not the phase.
Therefore, events will occur at the “right” time but the
magnitude of the event will be reduced.

e “Mix” or Turbulent mix will be reduced since small scale

information is lost due to reduced high frequency Fourier
Coefficients.

Dispersion
 Alters Fourier phase but not magnitude. So, events occur
with the right magnitude but not at the right time.

e “Mix” is not significantly altered since Fourier modal is
unchanged.



Large s code eriorts snould nav

east 2 totally independen
implementations

WARHEAD POLITICS
Livermore and the Competitive
System of Nuclear Weapon Design

Sybil Francis
(Ph.D. Thesis)

Manuscript date: June 1995

LAWRENCE LIVERMORE NATIONAL LABORATORY l
‘University of California * Livermare, California * 94551



numerical calculations do not

\\

/

-agree it is not always the numerical

calculation that is incorrect.

In 1989 the PhD thesis of Wai Sun Don at Brown

showed that wind tunnel tests of flow overa cy
were producing an artificial “secondary instabil

inder
ity”.

This instability was widely believed to exist and

. WasS

confirmed by independent wind tunnel tests and low
order numerical calculations. Using spectral methods

and a properly formulated outflow boundary

condition Don showed that the instability went away.

Later when the length of the wind tunnel was

increased the experimentally observed instability also
disappeared. The instability was due to an acoustic

wave interaction with the wind tunnel wall.
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Numetical Simulations of the human impact on global climate change require
calculations lasting for months on the worlds largest computers. How reliable are the

results?

150°W

150°W

1.5 20 25

Temperalure, kelvins

3.0

35

120°W

[

4.0

Moles

100-year simulations of carbon dioxide injected into ocean

(a) Column inventory (b) Surface flux

Year 100

107% moles
per square meter
per second

Column inventory = total amount of injected carbon dioxide in a column ol ocean water

al a glven location, per unit area
Surface flux = rate of escape of injected carbon dioxide through the surface of the ocean,

per unit area.



Direct Numerical Simulation is the notion that one can compute exactly all the
modes in a computational domain as long as one has enough grid points, etc.

Scale resolution has a one-to-one correspondence with grid
point density only for Fourier spectral operators and one
can expect the spatial differentiation to ]Ee exact for N/2
modes on a grid of N points.

For non-spectral operators the issue is completely different.
Non-spectral numerical schemes are low-order polynomial
approximations of sine modes and fundamentaﬁ)y one is
asking how well a given Fourier mode is approximated after
a given time.

Even for spectral methods no calculation is ever exact even
in a domain that is completely resolved. This is due to time
advancement which is, as above, a polynomial
approximation of Fourier modes.



EStimating Rellability ofT Numery
~Results: -

It is Critical to know...

Dissipation:

e Alters the magnitude of the Fourier modes but not the phase.
Therefore, events will occur at the “right” time but the
magnitude of the event will be reduced.

e “Mix” or Turbulent mix will be reduced since small scale

information is lost due to reduced high frequency Fourier
Coefficients.

Dispersion
 Alters Fourier phase but not magnitude. So, events occur
with the right magnitude but not at the right time.

e “Mix” is not significantly altered since Fourier modal is
unchanged.



—fa Calculation does NOT blow up,
is the Final Result always Correct?

The answer to this question is, of course, a resounding no.

Modeling of turbulent mixing, using the sPPM
code, will help validate subgrid-scale models

271800



NUmerical errors are generally
“poorly understood and often not

carefully considered.

The simulation that produced the previous slide was
with a second order numerical scheme applied to the
Euler equations, thus the leading order truncation
error is dispersive with the second order truncation
error is dissipative.

The small scale vortical structure is produced by
“viscosity” that is introduced solely by the numerical
scheme. In other words, the “turbulence” is an artifact
of the errors.



away Trom ad noc turbulence/

\\

-models and one needs precise
estimates of final time errors.

The final result of numerical simulations of fluids
related problems almost always depend heavily on
somewhat ad hoc modeling of small scale features.

Numerical simulations that do not explicitly
incorporate random noise are deterministic processes
and one can thus find error bounds on the final
answer. With such error bounds one can know exactly
how reliable the simulation is and make decisions
accordingly.



“The proposed work would have a
very broad impact.

Climate and weather simulations depend heavily on
the turbulence model. One can obtain completely
different climate patterns by changing arbitrary
parameter values in the turbulence model. Improved
weather prediction can positively impact battlefield
planning.

Likewise, ocean models can give drastically different
results depending on the turbulence model. Improved
ocean modeling can impact the guiding of
submarines.



Im T the Tinal time errors__—
estimates or the al t L=

\\\

“for Euler and Navier-Stokes
calculations.

First, one impact of obtaining such estimates is that
one can finally have an estimate on how reliable the
final solution to a numerical calculation is.

Second, there are numerous examples of calculations
that can not be correct given the number of time steps
taken or the nature of the numerical error.



Here we compare 5~ oraer WENQO
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INterrace condaitions wnere the
- Fourier amplitudes and phases
have a specific relationship.
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I chose a Richtmyer-Iiviesnkov setup
“that is of interest to us with and
without reshock.

First, a relatively strong Mach 10 shock is chosen for all
calculations in order to get into the regime of ICF.

The domain size and run time, 7oms, were chosen so
that I could run the same setup with and without a
reshock.

The grid point densitﬁwas chosen in order to keep the
runtimes short, less than 2omin, at the highest grid
point density.

The multimode interface was chosen with very high
modal content in order to help distinguish between
the lower and higher order implementations of

WENO.
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One needs a “measure” of success other than the eyeball norm and we choose
the language of Fourier analysis since it is commonly used in the field of
turbulence. 640 by 128.

* Fourier spectrum
* For gth order
* Integral = 6.02

* Fourier spectrum
* For 3" order
* Integral = 3.42




OT 64 by 520 ohe Can see  the
itional structure *

Pro pagates .
* 9th Order WENO

* 314 Order WENO




order WENO on a grid of 64 by
320.

* Fourier spec |
e For 9th order i
* Integral =5.20 SO

* Fourier spec .
® FOF 31'(1 OI‘deI‘
* Integral = 2.81




Visually anda Quantitatively, when |
order WENO most similar to 3™

order WENO

* 9" Order WENO on a
* Grid of 32 by 160
* Integral = 4.84 )

e 34 Order WENO on a
* Grid of 128 by 640
* Integral = 3.42




~ Studying RM
WENO.

* oth order WENO
* Grid 128 by 384
* Integral 17.73

* oth order WENO
* Grid 64 by 192
* Integral 16.16

e 39 order WENO
* Grid 128 by 384
* Integral 11.82

s 8 & .8 8 8 9




—3rd order WENO —5th order WENO —9th order WENO
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Richtmyer-Meshkov Instability

Convergence Study (M = 4.46,4 = 0.2 em,t =50 ps) : Density

WENO 3rd WENO 5th

e Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46.6 = 0.2 em,t = 50 us) : Density

WENO 7rd WENO 9th

o Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46.6 = 0.2 em,t = 50 us) : Density

WENO 11st Spectral

o Grid size for the Spectral and WENO schemes are 1024x256 in Full Domain.



Letl's Challenge the code with a
ach 100 shock followed by a
reshock Using the 5t order option.

* Here we simply we want to demonstrate that with even
a mach 100 shock on the notch interface followed by a
reshock that the code runs. Below we see the mixing

7NONeA
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passes does the nigh oraer |

-information persist or is it
destroyed?

Signal processing, in general, allows one to “see”
information that is otherwise obfuscated by some
source of noise (such as seeing chips in cutting tools).

The question is, if one cares only about pointwise
convergence can the first order error introduced
downstream from a shock be processed out so that the
underlying high order signal can be observed?

For a general set of nonlinear set of nonlinear
equations this can be demonstrated but not proved.



Oor a 2™ oraer Goaunov method
“with 9t or 11t order show the
following:

On a given grid, the Godunov method is between 2
and 4 times as fast but with far more dissipation.

The Godunov method requires about 4 times as many
orid points in each direction in order to obtain roughly
the same result at the final time.

Recall that floating point operations for hyperbolic
equations go as flops = C * NA (d+1)

Thus in 2D we have an improvement of between
(4*N)*(3)/2=32 and (4*N)*(3)/4 =16

In 3D the improvement is between (4*N)"(4)/2 = 128
and (4*N)"(4)/4 = 64.



times, but by p.roblem Slze. V\/e/
~have at most (2000)”*(3) points
available.

There is always an upper bound on available machine
and we don’t want to be in a situation where we have to
wait 1 year for a run to complete.

Thus, we can not always just double or quadruple the
grid in each direction without quickly hitting the
upper bound on available computational resources.



arfect on the Tiow Tield depen%g/
“on if the error is dissipative or

dispersive.

For the Euler equations (first derivatives) the leading
term in the truncation error is of the form
(dx)(p)fA (p+1)(x) where p is the order.

Substitute f(x) = e”(ikx) we see that for even order
schemes the dominant error is dispersive in nature.

The problem with the leading error being dispersive is
that it does not occur in NS as does a dissipative error.

NS = Euler + (effective dissipation)



s another way to quantify the numerical dissipation, one might
look at the “mass-weighted” circulation which is the integral of
the vorticity divided by density.

int omegasrho dA A (c AL S 1 rho_o)

T T
Hormalized circ wis time ——

Time in seconds

i i
0L.0001s 0.0001d 0L o001E



OOl TOor establisning the numerical-
~dissipation of a scheme away from
a discontinuity.

Ut = (UU)x Burgers equation is used to verify that
one’s scheme can keep its formal order of accuracy
even in the presence of a discontinuity. This is to
insure that when Euler or NS are calculated (with
shocks) that the numerical dissipation is the same as
when the scheme is applied to a smooth problem.



ITIS Important to keep in mina tn
~ fundamental reasons why high
order methods are advocated.

First of all, one MUST have high Fourier mode content
in order to distinguish between the low order and high
order methods.

Second, the advantage of high order increases with
increasing computational time.

Thus, if one examines only the single mode RM one
will never see convincing evidence for why high order
is advocated.



metnoas tor stuaying snock
“induced mixing is not new. Let’s
review what is known.

For spectral methods, the first order error introduced
by the shock can be post-processed out, or removed
via a Gegenbauer projection method. Proofs exist for
the linear case and computationally it has been shown
for the Euler equations.

It has been shown recently that the same result holds
for WENO and the results will be available soon.

Most importantly, one generally does not bother with
the post-processing because the first order error does
has no impact on flow features of interest such as
mixing.




“When is it appropriate to choose

high order methods?

High order methods are suitable only if the
computational fields develop high order information,
such as the vortices where mixing occurs.

[f ones computational fields are essentially piecewise
low-order then one should choose low-order
operators.

In other words, choose numerical differentiation
o]fgerators that have an order no greater than the order
of the data, which can be measured by ether wavelet or
Fourier analysis.



~Correctness of Numerical
Simulations

Above all, numerical calculations need to produce
answers that are physically correct.

e No two ocean models give the same answer

e No two coupled ocean-atmosphere models give the same
answer

e No two Inertial Confinement Fusion codes give the same
answer



