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Wind tunnel tests of airfoils 



Wind tunnels not infinite but some 
kind of closed loop 



Wind tunnel 



Yet another  wind tunnel 



The “Secondary Instability” 
 The physical experiment showed the existence of this 

instability 

 

 Numerical calculations “confirmed” the existence of 
this instability 

 

 But, both were wrong.   



What happened with the wind 
tunnel test. 
 In 1989 the PhD thesis of Wai Sun Don at Brown showed 

that wind tunnel tests of flow over a cylinder were 
producing an artificial “secondary instability”.   This 
instability was widely believed to exist and was confirmed 
by independent wind tunnel tests and low order numerical 
calculations.  Using spectral methods and a properly 
formulated outflow boundary condition Don 
showed that the instability went away.  Later when the 
length of the wind tunnel was increased the experimentally 
observed instability also disappeared.  The instability was 

due to an acoustic wave interaction with the 
wind tunnel wall. 



 



Two more pictures of the same physics in the previous slide 

 

 

 

 

 
 



Given an Initial Condition that is 
symmetric, the calculation 
maintains the symmetry. 
 3rd Order WENO 

 

 

 

 

 

 9th Order WENO 



Inertial Confinement Fusion (ICF) is a promising direction in the pursuit 
of a clean energy source.  Accurate numerical calculation of the 
Richtmyer-Meshkov mixing is critical to estimating if burn is achieved. 

 



Supernova, as with ICF, have a multi-layer structure.  As shocks 

pass from layer to layer one observes shock induced mixing.  
 



Numerical errors accumulate with increasing time and can eventually 
dominate a calculation especially for long-time integration of ICF, Super-

novas, climate models, etc.   

 



The numerical error can produce 
drastically different “physics”. 
 The following three frames show the final time mixing 

region for a Richtmyer-Meshkov calculation.  The 
three frames show mixing regions with varying 
amounts of small scale structure.  The only difference 
between the frame is that the numerical error 
(dissipation in this case) decreases as one progresses 
from left to right. 



Here we visually examine the mix 
zone of an 11th order WENO and a 
2nd order Godunov method. 
 One can see visually the 11th order WENO supports 

much more structure for a given grid. 

 Our goal as stated is to get away from eyeball norms. 



2nd Order Godunov at 128x640 and 
256x1280. 



We must be methodical and 
understand exactly why two 
different 2nd order Godunov 
schemes give very different results. 

 



If one compares the 9th order 
WENO to the 3rd order on a grid of 
128 by 640 one can visually see 
much more structure. 
 9th Order WENO 

 

 

 

 

 

 3rd Order WENO 



On the notch problem, it is our 
conjecture that 2nd order Godunov 
is “more or less” equal to 3rd order 
WENO.  M5, 140microseconds. 
 11th WENO                5th WENO             3rd  WENO               2nd Godunov 



–3rd order WENO –5th order WENO –9th order WENO 









Let’s challenge the code with a 
Mach 100 shock followed by a 
reshock using the 5th order option. 
 Here we simply we want to demonstrate that with even 

a mach 100 shock on the notch interface followed by a 
reshock that the code runs.  Below we see the mixing 
zone. 



How much error and what kind of 
error is acceptable? 
 Transport of large-scale (low wave number) features 

can be done with almost any scheme and one will 
obtain an acceptable result. 

 Mixing at a fine scale requires a great deal of attention 
to magnitude of the error and type 

 Dissipation: clearly increased dissipation damps high 
wave numbers and smooths the flow 

 Dispersion: waves travel at different speeds.  Does this 
increase or decrease mixing or neither? 



High order methods affect most the small scale structures in a flow and large 
scale features such as location of peaks and valleys are calculated equally well 
with low order schemes. 



Correctness of Numerical 
Calculations (with T. Jackson and G. 
Leseign 1994 and 1999) 



LeapFrog:  A Commonly used 
Numerical Scheme in 
Oceanography and 
Electromagnetics.  For the Simple 
Convection Equation Error is 
Dispersive 



Computational Mathematics 2007 Dear 
Colleague Letter on Long-Time Behavior of 
Numerical Methods 

 
 The number of degrees of freedom, in particular the number of time steps, for solving partial 

differential equations grows as computational resources grow.  Errors or numerical 
artifacts that may be insignificant when the number of time steps 
to solution is relatively small can dominate a calculation as this 
number reaches the tens or hundreds of thousands.  Such non-
physical artifacts can come in a variety of forms, from the 
accumulation of numerical truncation error, round-off error, 
uncertainty in physical parameter values, model uncertainty, etc. 
Theoretical error estimates containing constants that grow exponentially with time are not adequate 
to address these effects.  Further, as computational platforms grow in size with increasing numbers of 
CPUs, the advent of commodity multi-core processors, and the increasing heterogeneity of 
computing environments, increasing care must be paid to designing algorithms that are conducive to 
such architectures.  The trend in computational hardware is to have tens or hundreds of thousands of 
processors with limited memory associated with each processor and nodes that contain clusters of 
processors. It is critical that proposed numerical approaches take into account various latencies and 
load balancing issues that will certainly be encountered on such architectures. Such large calculations 
produce very large data sets.  Algorithms for the efficient analysis and visualization of very large data 
sets on such modern architectures in order to uncover hidden correlations and structures are also of 
interest. Above all, the physical correctness of the calculation is the most important issue. Arriving at 
a physically relevant answer requires careful attention to the above issues as well as others.   
 



Large 3D code efforts should have at least 2 
totally independent implementations 
 

 Physics: For complex systems, e.g., turbulence, not 
everyone will agree on the physical model such as closure 
models. 

 Numerics: For complex systems in 3 dimensions with 
various complexities such as topological structure change, 
not everyone will agree if one should use ALE, 2nd Order 
FD, WENO, ENO, 2nd Order Godunov, spectral methods, 
compact schemes, … 

 Software: For large supercomputers, in my experience 
compilers are not bug free for at least 2 years. 

 Project Management should also be independent. 



Summary: How many ways can we 
get the wrong answer? 
 “Incorrect” physics, e.g., turbulence model 

 Incorrect implementation 

 Excessive dispersion with studying moving 
phenomenon 

 Excessive dissipation when studying small scale 
features 

 Immature compilers (less than 2 years old) 

 Staff with the wrong training 

 Compiler options…  

 Etc. 



Estimating Reliability of Numerical 
Results: 
It is Critical to know… 
 Dissipation: 

 Alters the magnitude of the Fourier modes but not the phase.  
Therefore, events will occur at the “right” time but the 
magnitude of the event will be reduced. 

 “Mix” or Turbulent mix will be reduced since small scale 
information is lost due to reduced high frequency Fourier 
Coefficients. 
 

 Dispersion 
 Alters Fourier phase but not magnitude.  So, events occur 

with the right magnitude but not at the right time. 
 “Mix” is not significantly altered since Fourier modal is 

unchanged. 
 



Large 3D code efforts should have 
at least 2 totally independent 
implementations 



If physical experiments and 
numerical calculations do not 
agree it is not always the numerical 
calculation that is incorrect. 
 In 1989 the PhD thesis of Wai Sun Don at Brown 

showed that wind tunnel tests of flow over a cylinder 
were producing an artificial “secondary instability”.   
This instability was widely believed to exist and was 
confirmed by independent wind tunnel tests and low 
order numerical calculations.  Using spectral methods 
and a properly formulated outflow boundary 
condition Don showed that the instability went away.  
Later when the length of the wind tunnel was 
increased the experimentally observed instability also 
disappeared.  The instability was due to an acoustic 
wave interaction with the wind tunnel wall. 



Numerical Simulations of the human impact on global climate change require 
calculations lasting for months on the worlds largest computers. How reliable are the 

results?    
 



Direct Numerical Simulation is the notion that one can compute exactly all the 
modes in a computational domain as long as one has enough grid points, etc. 

 Scale resolution has a one-to-one correspondence with grid 
point density only for Fourier spectral operators and one 
can expect the spatial differentiation to be exact for N/2 
modes on a grid of N points. 

 For non-spectral operators the issue is completely different.  
Non-spectral numerical schemes are low-order polynomial 
approximations of sine modes and fundamentally one is 
asking how well a given Fourier mode is approximated after 
a given time.   

 Even for spectral methods no calculation is ever exact even 
in a domain that is completely resolved.  This is due to time 
advancement which is, as above, a polynomial 
approximation of Fourier modes. 
 

 
 



Estimating Reliability of Numerical 
Results: 
It is Critical to know… 
 Dissipation: 

 Alters the magnitude of the Fourier modes but not the phase.  
Therefore, events will occur at the “right” time but the 
magnitude of the event will be reduced. 

 “Mix” or Turbulent mix will be reduced since small scale 
information is lost due to reduced high frequency Fourier 
Coefficients. 
 

 Dispersion 
 Alters Fourier phase but not magnitude.  So, events occur 

with the right magnitude but not at the right time. 
 “Mix” is not significantly altered since Fourier modal is 

unchanged. 
 



If a Calculation does NOT blow up, 
is the Final Result always Correct? 
 The answer to this question is, of course, a resounding no.   



Numerical errors are generally 
poorly understood and often not 
carefully considered. 
 The simulation that produced the previous slide was 

with a second order numerical scheme applied to the 
Euler equations, thus the leading order truncation 
error is dispersive with the second order truncation 
error is dissipative. 

 The small scale vortical structure is produced by 
“viscosity” that is introduced solely by the numerical 
scheme.  In other words, the “turbulence” is an artifact 
of the errors. 

 



Numerical simulations need to get 
away from ad hoc turbulence 
models and one needs precise 
estimates of final time errors. 
 The final result of numerical simulations of fluids 

related problems almost always depend heavily on 
somewhat ad hoc modeling of small scale features.   

 Numerical simulations that do not explicitly 
incorporate random noise are deterministic processes 
and one can thus find error bounds on the final 
answer.  With such error bounds one can know exactly 
how reliable the simulation is and make decisions 
accordingly.  



The proposed work would have a 
very broad impact. 
 Climate and weather simulations depend heavily on 

the turbulence model.  One can obtain completely 
different climate patterns by changing arbitrary 
parameter values in the turbulence model.  Improved 
weather prediction can positively impact battlefield 
planning. 

 Likewise, ocean models can give drastically different 
results depending on the turbulence model.  Improved 
ocean modeling can impact the guiding of 
submarines. 

 



The work plan is to obtain careful 
estimates of the final time errors 
for Euler and Navier-Stokes 
calculations. 
 First, one impact of obtaining such estimates is that 

one can finally have an estimate on how reliable the 
final solution to a numerical calculation is. 

 Second, there are numerous examples of calculations 
that can not be correct given the number of time steps 
taken or the nature of the numerical error. 

 



Here we compare 3rd order WENO 
at four levels of grid refinement 
run on 16cpus of ASCI Blue. 
From left to 

right we have 

contour plots 

at increasing 

grid point 

resolution, 

16x80  RT=9s 

32x160 RT = 28s  

64x320 RT = 2m,14s 

128x640 RT = 12m,55s 

of the density 

at the final 

time. 



Here we compare 5th order WENO 
at four levels of grid refinement 
run on 16cpus of ASCI Blue. 
From left to 

right we have 

contour plots 

at increasing 

grid point 

resolution, 

16x80   RT = 12s 

32x160  RT = 36s  

64x320  RT = 2m,47s 

128x640 RT = 17m,0s 

of the density 

at the final 

time. 

 



We are interested in multimode 
interface conditions where the 
Fourier amplitudes and phases 
have a specific relationship.   

 



Initial interface should have a 
broad spectrum. 
 Log Fourier 

 Spectrum of  

 Initial interface 

 

 

 

 Fourier spectrum 

 Of initial interface 



I chose a Richtmyer-Meshkov setup 
that is of interest to us with and 
without reshock. 
 First, a relatively strong Mach 10 shock is chosen for all 

calculations in order to get into the regime of ICF. 
 The domain size and run time, 70ms, were chosen so 

that I could run the same setup with and without a 
reshock. 

 The grid point density was chosen in order to keep the 
runtimes short, less than 20min, at the highest grid 
point density. 

 The multimode interface was chosen with very high 
modal content in order to help distinguish between 
the lower and higher order implementations of 
WENO. 



One needs a “measure” of success other than the eyeball norm and we choose 
the language of Fourier analysis since it is commonly used in the field of 
turbulence.  640 by 128. 

 Fourier spectrum 

 For 9th order 

 Integral = 6.02 

 

 

 

 

 Fourier spectrum 

 For 3rd order 

 Integral = 3.42 



Similarly, if one compares 9th order 
WENO to 3rd order WENO on a grid 
of 64 by 320 one can “see” the 
additional structure the 9th order 
propagates. 
 9th Order WENO 

 

 

 

 

 3rd Order WENO 



Fourier Spectrum of final answer 
for 9th order WENO compared to 
3rd order WENO on a grid of 64 by 
320. 
 Fourier spec 

 For 9th order 

 Integral = 5.20 

 

 

 

 

 Fourier spec 

 For 3rd order 

 Integral = 2.81 

 



Visually and Quantitatively, when is 
9th order WENO most similar to 3rd 
order WENO 
 9th Order WENO on a  

 Grid of 32 by 160 

 Integral = 4.84 

 

 

 

 

 

 3rd Order WENO on a 

 Grid of 128 by 640 

 Integral = 3.42 

 

 

 

 

 

 



Studying RM reshock with high order 
WENO. 
 9th order WENO 

 Grid 128 by 384 

 Integral 17.73 

 

 9th order WENO 

 Grid 64 by 192 

 Integral 16.16 

 

 3rd order WENO 

 Grid 128 by 384 

 Integral 11.82 



–3rd order WENO –5th order WENO –9th order WENO 









Let’s challenge the code with a 
Mach 100 shock followed by a 
reshock using the 5th order option. 
 Here we simply we want to demonstrate that with even 

a mach 100 shock on the notch interface followed by a 
reshock that the code runs.  Below we see the mixing 
zone. 



Even with a first order error 
introduced in the flow as the shock 
passes does the high order 
information persist or is it 
destroyed? 
 Signal processing, in general, allows one to “see” 

information that is otherwise obfuscated by some 
source of noise (such as seeing chips in cutting tools). 

 The question is, if one cares only about pointwise 
convergence can the first order error introduced 
downstream from a shock be processed out so that the 
underlying high order signal can be observed? 

 For a general set of nonlinear set of nonlinear 
equations this can be demonstrated but not proved. 



Our initial results on a comparison 
of a 2nd order Godunov method 
with 9th or 11th order show the 
following: 
 On a given grid, the Godunov method is between 2 

and 4 times as fast but with far more dissipation. 

 The Godunov method requires about 4 times as many 
grid points in each direction in order to obtain roughly 
the same result at the final time. 

 Recall that floating point operations for hyperbolic 
equations go as flops = C * N^(d+1) 

 Thus in 2D we have an improvement of between 
(4*N)^(3)/2= 32 and (4*N)^(3)/4 = 16 

 In 3D the improvement is between (4*N)^(4)/2 = 128 
and (4*N)^(4)/4 = 64. 

 

 



Numerical computations are 
limited not only by maximum run 
times, but by problem size.  We 
have at most (2000)^(3) points 
available. 
 There is always an upper bound on available machine 

and we don’t want to be in a situation where we have to 
wait 1 year for a run to complete. 

 Thus, we can not always just double or quadruple the 
grid in each direction without quickly hitting the 
upper bound on available computational resources. 

 

 



The nature of the leading order 
numerical error can have a large 
affect on the flow field depending 
on if the error is dissipative or 
dispersive. 
 For the Euler equations (first derivatives) the leading 

term in the truncation error is of the form 
(dx)^(p)f^(p+1)(x) where p is the order. 

 Substitute f(x) = e^(ikx) we see that for even order 
schemes the dominant error is dispersive in nature. 

 The problem with the leading error being dispersive is 
that it does not occur in NS as does a dissipative error. 

 NS = Euler + (effective dissipation) 



As another way to quantify the numerical dissipation, one might 
look at the “mass-weighted” circulation which is the integral of 
the vorticity divided by density. 



Burgers equations is a very useful 
tool for establishing the numerical 
dissipation of a scheme away from 
a discontinuity. 
 

 Ut = (UU)x Burgers equation is used to verify that 
one’s scheme can keep its formal order of accuracy 
even in the presence of a discontinuity. This is to 
insure that when Euler or NS are calculated (with 
shocks) that the numerical dissipation is the same as 
when the scheme is applied to a smooth problem. 



It is important to keep in mind the 
fundamental reasons why high 
order methods are advocated. 
 First of all, one MUST have high Fourier mode content 

in order to distinguish between the low order and high 
order methods. 

 Second, the advantage of high order increases with 
increasing computational time. 

 Thus, if one examines only the single mode RM one 
will never see convincing evidence for why high order 
is advocated. 



The use of high order numerical 
methods for studying shock 
induced mixing is not new.  Let’s 
review what is known. 
 For spectral methods, the first order error introduced 

by the shock can be post-processed out, or removed 
via a Gegenbauer projection method.  Proofs exist for 
the linear case and computationally it has been shown 
for the Euler equations. 

 It has been shown recently that the same result holds 
for WENO and the results will be available soon. 

 Most importantly, one generally does not bother with 
the post-processing because the first order error does 
has no impact on flow features of interest such as 
mixing. 



When is it appropriate to choose 
high order methods? 
 High order methods are suitable only if the 

computational fields develop high order information, 
such as the vortices where mixing occurs. 
 

 If ones computational fields are essentially piecewise 
low-order then one should choose low-order 
operators. 
 

 In other words, choose numerical differentiation 
operators that have an order no greater than the order 
of the data, which can be measured by ether wavelet or 
Fourier analysis. 



Correctness of Numerical 
Simulations 
 Above all, numerical calculations need to produce 

answers that are physically correct.   
 No two ocean models give the same answer 

 No two coupled ocean-atmosphere models give the same 
answer 

 No two Inertial Confinement Fusion codes give the same 
answer 

 


