

Alfred Gessow Rotorcraft Center

UNIVERSITY OF MARYLAND

Review of Rotorcraft Aeromechanics Methodology

Inderjit Chopra

*Director Alfred Gessow Rotorcraft Center &
Alfred Gessow Professor in Aerospace Engineering*

**Presentation At: NASA Roundtable Meeting, Washington DC
February 21, 2012**

Definition of Rotorcraft

An air vehicle whose primary means of vertical lift
is a rotating airfoil

Is This Air Vehicle a Rotorcraft?

Yes

Maybe

No

Rotorcraft Aeromechanics Research

Today's Technology Drivers

- All round desire to increase performance & efficiency
SFC, Figure of merit, power loading, L/D etc
- Explosion of IT & wireless technology
- Maturation of composite technology & upcoming smart structures technology
- Availability of sophisticated prediction tools
- Availability of miniaturized sensors & reliable measurement techniques

Rotorcraft Aeromechanics Research

Today's Non-Technology Drivers

- All-round desire to reduce Cost! & Cost!!
(Acquisition, maintenance and Operating: life cycle)
- More Safety & ease of flying
- Green legislations!!! Noise! & CO₂ level
- More autonomy requirements
- Runway saturation & terminal area gridlock
- Asymmetric & urban warfare

Index of Rotor Efficiency

Figure of Merit

$$FM = \frac{\text{Ideal Power required to hover}}{\text{Actual Power required to hover}}$$

Power Loading

$$PL = \frac{\text{Thrust Produced}}{\text{Actual Power required}}$$

Power Loading (Thrust/Power)

State-of-Art of Helicopter Technology

Speed	~150 Knots	Airplane of 1920's
Range	<500 nm	low
Payload	<40,000 lbs	low
Ceiling	<15,000 ft	low
Figure of merit	<0.8	Up from 0.6 in 1940
Lift-to-drag ratio	5-6	Up from 4-5 in 30 years
Productivity	Low c.f. of airplane	Small increase in 30 years
Vibration levels	High “	Uncomfortable
Noise levels	High “	Obtrusive

Despite all of the understanding of aeromechanics, why has the helicopter apparently reached a peak in its capabilities?

By our estimate, it HASN'T!!

But, we need to get better at implementing solutions to the problems!

Assessment of Expertise

- ***Our assessment:***
 - ***We had reached a plateau and a “dip”***
 - ***This plateau is a transition phase toward something better***
 - ***There is “perception” helicopters do what they do and no more***

Postdictive Versus Predictive Capabilities

- ***POSTDICTIVE modeling capability:***
 - *Significant simplification of physics*
 - *Too many empirical “constants”*
 - *Usually operate on the “top” level*
 - *Calibrated to specific or “favorite” data sets)*
 - *Cannot “predict” outside bounds of validation*
- ***PREDICTIVE modeling capability:***
 - *Requires in-depth understanding*
 - *Need very detailed experiments for proper validation*
 - *Built from upward from governing equations (first principle)*
 - *Appropriate predictive capability (especially for new configurations)*
 - *More expensive but needed for getting over the dip*

Why Does the “Dip” Happen?

- *We reach our “comfort zone”*
- *Rooted in “postdictive” capabilities*
- *As methods are brought to bear on new problems, limitations realized*
- *Priorities change or low (or no) funding for apparently “well-studied” problems*
- *“Cultural barriers”*
- *We close our wind tunnels!*
- *Helicopter has “reached its peak”!*
- *Expertise also slowly lost in time:*
 - *People move on, retire, etc.*
 - *We forget the fundamentals!*
 - *Fewer people with “sense of physics”*
 - *Experience not passed on effectively*
 - *Information hard to find (rediscovery!)*
 - *Work not written down in archival literature*

Continuation of “Dip”?

- ***R&D Funds***
 - *Erratic flow of funds*
 - *Following of milestones (creativity secondary)*
 - *Too much bureaucracy*
- ***Future Rotorcraft***
 - *Overindulgence in upgrades*
 - *Pursuing infeasible projects*
 - *Industry: too short sighted*
- ***Government Laboratories (Buyers)***
 - *Becoming weak in talent and facilities*

Rotorcraft Aeromechanics

Coverage

Aeromechanics involves coupled, multi-, inter-disciplinary

- **Dynamics (Aeroelasticity)**
- **Aerodynamics & Performance**
- **Acoustics**
- **Flight Dynamics & Controls**
- **Structures**

Aerodynamics

Aerodynamics: Challenges

- Nonsteady and complex aerodynamics and rotor wakes

Transonic flow & shocks
Reversed flow
Dynamic stall
Rotor/body/tail interaction

Rotor Wakes

Main rotor wake interactions with fuselage, empennage, tail-rotor

Vortex/Vortex Interactions:
Highly three-dimensional
induced flow-field

Blade/Vortex Interactions:
Rotor loads, Performance
& Acoustics

Analysis Methods: Wake Geometry Calculation

Prescribed geometry

- *Prescribed wake (Piziali/DuWaldt 1962)*
- *Refined by experimental induced velocities (Landgrebe 1969) to improve hover performance*
- *Kocurek/Berkovitz 1982*
- *Refined for forward flight, (Landgrebe/Egolf 1983, Beddoes 1985)*

Free Geometry

- *Relaxation model (Scully 1975)*
- *General free wake method (Johnson 1995)*
- *Pseudo-implicit predictor-corrector (Bagai/Leishman 1995)*
- *Multiple trailer method (Johnson 2002)*
- *Constant vorticity contour method (Wachspress 2003)*
- *Multiple rotors, multiple trailers, dual peak, dissimilar blades (Bagai/Leishman 1996, Johnson 1988)*

Free, time accurate

- *Hover (Crimi 1965, Scully 1967) instability*
- *Clark/Leiper 1970 (enforced periodicity), forward flight (Landgrebe 1969, Sadler 1971)*
- *Vortex lattice model (Egolf 1988), Baron/Baffadossi 1993*
- *Jain 1998, Chung 2000 studied hover instability*
- *Bhagwat/Leishman 2003 for hover, steady and maneuvering flight, explained hover instabilities*

Rotor Wakes: Measurement

Wide-Field Shadowgraphy

Laser Doppler Velocimetry

Schlieren System

Particle Image
Velocimetry

Future: DPS-DPIV (Dual-Plane Stereoscopic Digital Particle Image Velocimetry) can measure 3 velocity and 9 velocity gradients using 3 pair of lasers and 3 synchronized cameras.

Aerodynamic Modeling: State-of-Art

	Past	Present	Future
Blade Aero	Lifting line Table-lookup Empirical stall	Indicial response functions for unsteady and dynamic stall	CFD/CSD coupling
Rotor Wake	Linear inflow Prescribed	Free wake Frequency & time-domain	CFD-generated wake capture
Airframe	Flat plate area	Table lookup Panel method	CFD rotor/body coupled
CFD Modeling	Euler Uncoupled	Navier-Stokes CFD/CSD loose coupling	CFD/CSD tight coupling

Structural Modeling

Structural Modeling: Challenges

- Coupled and nonlinear phenomena involving complex Coriolis/Gyroscopic forces
- Blade modeled as a beam undergoing moderately large deformations involving coupled flap and lag bending, torsion and axial motions
- Airframe 3-D structure with complex joints and cutouts

Structural Layout

Airframe Assembly

Composite Structures

Rotor and airframe are now increasingly being built out of composites.

Key Issues:

- **Modeling of composite blades and airframe (coupled, nonlinear, non-classical structural effects important)**
- **Structural integrity including ply delamination (flexbeam undergoing large dynamic twisting)**
- **Energy absorption due to landing and ballistic impact (off-axis landing, damaged blades)**
- **Repair of composites (field, depot and factory)**

FEM vs Multibody

Classical FEM

- Typically uses single body coordinate frame
 - Deformations and loads in body coordinates
 - Topology dependent

Multibody

- Body and element coordinates
 - Deformation and loads in element coordinates
 - Increased scope of modeling

Multibody Analysis

- Increased scope of structural modeling
- Detailed modeling of control system and hub assembly
 - Exact pitch link, damper kinematics
 - Swashplate servo dynamics
- Large blade deformations
 - Moderate deformation within element frame
 - Large deformations accommodated by finite rotation of frames (important for maneuvering flight)

Structural Modeling: State-of-Art

	Past	Present	Future
Deflections	Moderate-large Ordering scheme	Moderate-large	Large (no ordering)
Blade Modeling	FEM/modal	FEM/Multibody	Multibody
Airframe	Stick model	3-D FEM/modal	Multibody
Materials	Small strain Isotropic	Small strain Anisotropic	Large strain Coupled laminates

Dynamics

Dynamics

Interaction of structural, aerodynamics and inertial forces (aeroelasticity)

Issues:

- **Vibration & Loads:** prediction, measurement & suppression (level flight, maneuvering flight and gusty environment)
- **Aeromechanical Stability:** augmentation (flap-lag flutter, pitch-flap flutter, ground/air resonance)

Helicopter Vibration: Definition

Vibration : Accelerations in fuselage

- *Intrusion Index: weighted mean of 4 largest frequencies in vertical, lateral and longitudinal directions up to 60 Hz*

- **Vibratory Forces: Rotor blades are excited at all harmonics, only harmonics consisting integer multiples of blade number, pN_b/rev are filtered through hub**
- **1/rev due to rotor asymmetry**

Rotor Dynamics in Forward Flight

Sources of Vibration

- **Asymmetric flow in forward flight**
- **Complex wake**
- **Compressibility on advancing side and dynamic stall on retreating side**
- **Flexible rotor blades**

High Vibration: Flight Conditions

- **4 Critical flight regimes:**
 - low speed transition
 - high speed
 - high altitude-high thrust
 - Maneuvering flight
- **Enormous vibration:**
 - *High operating cost*
 - *Reduced crew/system performance*

Measured Vibration at pilot floor

Rotor Definitions

Vibratory Loads at High Speed: Prediction vs. Flight Data in 1998

*Predicted 4/rev vibratory hub load at high speed
from 8 different rotor codes for LYNX*

AA - 2GCHAS AR - Flightlab D - CRFM
M - UMARC (Maryland) N - CAMRAD1
SR - RDYNE SU - UMARC (Sikorsky)
W - R150

- *None of predictions agreed with flight test data*
- *No two predictions agreed with each other*
- *LYNX Blades were not pressure instrumented, hence systematic correlation study with air loads and blade loads could not be possible*

Vibratory Loads at High Speed: Prediction vs. Flight in 2000

$$\mu = 0.368 \quad C_w \\ / \sigma = 0.078$$

— 2GCHAS/RCAS
- - - - CAMRAD/JA

Phase error in advancing
blade lift prediction

Error in pitch link load
prediction

Vibration Validation Study

Major undertaking in 2001: Team involving industry, academia, NASA/Army to resolve vibration barrier issues. Loads Workshop: Meet every 6 months since 2001

Vehicle: UH-60A Black-Hawk, extensive flight test data with pressure instrumented blades

Identified 4 critical flight conditions:

Level Flight:

1. High speed $\mu = 0.37$

2. Low speed transition $\mu = 0.15$

3. High altitude dynamic stall $\mu = 0.24$

Maneuver:

4. Severe pull-up Maneuver $\mu = 0.341$
(load factor = 2.09)

High Speed: CFD/CSD coupled Solution: First barrier problem resolved (2002)

Lift 0-10/rev

Vibratory Lift 3-10/rev

Pitching Moment 1-10/rev

Azimuth, degs.

Azimuth, degs.

Azimuth, degs.

Pitch Link Load at high speed: CFD/CSD Second barrier problem resolved (2003)

Pitch Link Load, lbs

Predicted Pitching Moment and Stall Map at High Altitude & High Thrust

- 1st cycle caused by high angle of attack, 3D, stall vortex moving across span
- 2nd stall cycle caused by 4-5 elastic twist, mostly 2D

Third barrier problem resolved (2004)

4th Critical Flight: Pull-Up Maneuvering Flight

- Design loads set by severe maneuvers under stall
- C11029 : 2.12 g pull up at 139 kts, highest flap bending, and Pitch-Link (PL) load, severest maneuver

Dynamic stall, vortex loading, transonic effects can occur simultaneously

Flight 11029, Severest UH-60A Maneuver: Stall Map

Flight Test Measurement

Rev 14
 $\mu = 0.341$
Load factor = 2.09

High trim
angle stall

Elastic twist and
inflow stall

Wake cuts through
rotor disk twice

Fuselage induced
flow separation

3 Stall Cycles

Pitching Moment C11029: Rev 18

Advancing blade stall predicted accurately using prescribed deformations

Pitching Moment: Maneuver Rev 14

- *Prediction with CFD/CSD shows good correlation for two stall cycles on retreating side -- **advancing blade stall not predicted***

Prediction of Vibratory Loads

Critical Flight Conditions:

- High speed forward flight: vibration
- Low speed transition flight: vibration
- High altitude dynamic stall: loads
- Severe maneuvers: pitch link loads

Key Conclusions:

CFD provides fundamental capability

- *At high speed: 3D unsteady transonic pitching moment*
- *At low speed: capturing of inter-twinning of wakes*
- *For dynamic stall flight: capturing of second cycle due to 4 and 5P twist, placement depends upon wake and turbulence model*

Pull-Up Maneuver:

3 dynamic stall cycles, Advancing-side stall triggered by 5/rev twist, Two dynamic stall cycles on retreating side separated by 1/5th cycle excites 5/rev twist deformation

Dynamics: State-of-Art

	Past	Present	Future
Vibration Prediction (normal flight) Prediction (Maneuvering) Suppression	>50% error Not reliable Passive Penalty 3% GW	~ 20% error Inadequate tools Passive/active (few) 1-3% penalty	<10% desirable ~10% desirable Active/passive/Optimized <1% penalty
Composites Couplings	Tools development	Showed potential to improve vibration and stability, but no implementation	Composite tailoring Full-scale implementation for performance and stability
Aeromechanical Stability Prediction (Normal flight) Prediction (Maneuvering) Suppression	Adequate for conventional rotors Inadequate Hydraulic/Elastomeric	Adequate for advanced rotors Tools development Elastomeric	Exploit couplings Reliable tools needed Damperless

Rotorcraft Analysis

Rotorcraft Analysis: Challenges

- **Governing Equations:** Coupled and nonlinear equations with periodic coefficients
- **Solutions:** Trim and rotor response, aeroelastic stability, flight stability, transient response
- **Steady Level Flight Analysis:** Periodic response analysis
- **Non-Steady Maneuvering Analysis:** Time marching analysis

$$[A(\psi, y, \dot{y})]\{y\} = \{G(\psi, y, \dot{y})\}$$

Analysis Methods: Rotor Codes

Specialized Rotor Codes

- *Greater details, accuracy and scope to model some physical mechanisms while simplifying most other interactions*
- *RotorCRAFT to CHARM – detailed free wake, rotor-fuselage aerodynamic interaction*
- *KTRAN-RDYNE-GENHEL – structural dynamics and flight dynamics*
- *DYMORE II – multibody rotor-fuselage dynamic model*
- *R150 and Westland/DERA*
- *C81 and COPTER*
- *R85/METAR*

Comprehensive Codes

- *Includes all basis components to handle multidisciplinary loads, vibration and stability, Can perform trim, transient and flutter*
- *CAMRAD family*
- *UMARC family*
- *2GCHAS to RCAS*
free wake model
unsteady aero, stall model
flexible blade dynamics
free flight trim
airframe dynamics
advanced geometry blades
composite, modern rotors
3D CFD loose coupling

Analyses: State-of-Art

	Past	Present	Future
Trim/Steady Response	Modal method/ Harmonic Balance	Modal/Complete FEM time	Time integration coupled equations
CFD/CSD Coupling	Iteratively	Loose	Tight
Stability	Linear Modal/Floquet	Linear Modal/Full Floquet	Time marching Prony method
Maneuver Analysis	Modal/Time integration	Modal/Time integration	Fully coupled time marching

Rotorcraft Technology Needs

Technology Needs

- ***High Performance index***
 - *Low airframe drag (exploit CFD and active flow control)*
 - *Modular engine, high SFC*
 - *Variable speed transmission (exploit automotive technology)*
- ***Ultralight Structures***
 - *Next generation composites*
 - *Multidisciplinary optimization*
- ***Mission Adaptive Rotors***
 - *Active morphing for “quantum jump” in performance*
 - *Composite couplings for performance and loads*
- ***HUMS***
 - *Beyond transmission & drivetrains (rotor head, servo failures, etc)*

Technology Needs

- *Increased level of autonomy*
 - *Collision avoidance*
 - *Embedded miniaturized sensors and transmitters*
- *Green rotorcraft*
 - *High SFC*
 - *Hybrid Engines*
 - *Re-cycling composite materials*
 - *All electric rotorcraft (swashplateless, hydraulicless)*
- *Expand Validation of Comprehensive Codes*
 - *Carefully planned component and configuration tests under controlled flight environment and systematic validation by team (government, industry & academia)*
 - *Nurture active participation with existing and new test data*

Recommendations

- *For competitiveness of rotorcraft industry, seek new state-of-art production rotorcraft (not upgrades!!!).*
- *Nurture rotorcraft centers of excellence (not fragmentations!!!!)*
- *Reward ‘creativity and depth’ in research (let us not create a culture of milestones!!!!)*
- *Experimental facilities are key to methodology robustness, product refinements and revolutionary designs (let us not close wind tunnels!!!)*
- *Use creativity to reduce life cycle cost (real not fake!!)*
- *Discourage infeasible designs (too many paper studies!!!)*
- *“Nurture active team (industry, labs and academia) validations of methodology (both at component & configuration level)”*

Crossing the Dip?

- ***Advances in aeromechanics appear poised for enormous potential in rotorcraft, especially towards the development of a mission adaptive rotor with a quantum leap in performance***