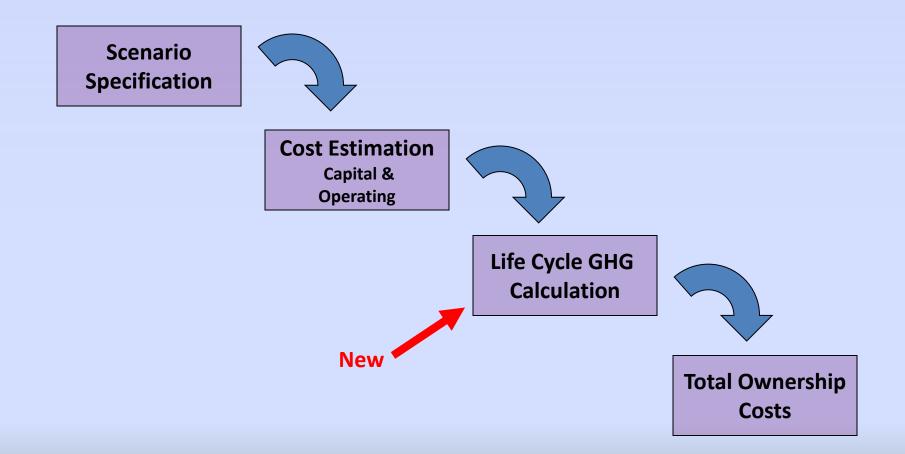
Greenhouse Gas Benefits of Building Re-use vs. New Construction

A Presentation before the Federal Facilities Council National Academy of Sciences January 29, 2013

Facilities Context

- The Department of Defense owns 345,000 buildings
- 105,000 of them are over fifty years old
- 42 % of US carbon emissions come from existing buildings (DOE)


Legal and Policy Framework

- National Historic Preservation Act of 1966 (Amended)
- Energy Policy Act of 2005
- Energy Independence and Security Act of 2007
- Executive Order 13423: Federal Environment, Energy, and Transportation Management (2007)
- Executive Order 13514: Federal Leadership in Environment, Energy, Economic Performance (2009)

What the Study Looked at

- 1. Modernization costs of Pre-War Buildings compared to new construction
- 2. Life cycle energy costs achieved through modernization at a LEED Silver level compared to new construction.
- 3. Scope 3 GHG savings associated with the reuse of Pre-War Buildings
- 4. Impact on project NPV of monetizing GHG emissions in TOC analysis
- 5. Project cost and GHG differences by varying historic preservation and AT/FP standards
- 6. Challenges associated with replicating our approach

A New Step for TOC Analysis

PROJECT TEAM MEMBERS

CO-PRINCIPAL INVESTIGATORS:

David Shiver, Bay Area Economics (BAE) and **Cherilyn Widell**, Seraph LLC

Study Team:

Patrick Sparks, P.E. Sparks Engineering, Inc.

Douglass C. Reed, Preservation Associates, Inc.

Jennifer Martin and Rachael Terada, Center for Resource Solutions

Paul Neidinger, Architect

Roger Catlett, P.E. Comfort Design, Inc.

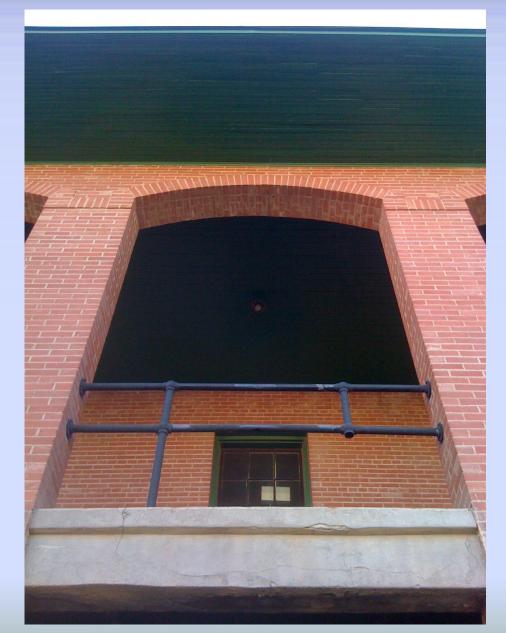
Installations

- Fort Bliss, El Paso TX
- St. Juliens Creek Annex, Norfolk Naval Shipyard, Chesapeake VA
- F.E. Warren AFB, Cheyenne WY

cs

S

BUILDING SELECTION CRITERIA


- ✓ Non-residential
- "Typed" historic/non-historicDoD buildings
- ✓ Pre- World War II
- ✓ Masonry
- Cohesive technology (avoid buildings with additions)
- ✓ Climate variability

ORIGINAL DESIGN INTELLIGENCE

Built-in green design characteristics which contribute to an ability to naturally conserve energy

- ✓ Durable materials
- $\checkmark\,$ Natural lighting and ventilation
- ✓ Heat wells
- ✓ Open floor plans
- ✓ Site orientation
- ✓ Basements
- ✓ Tall ceilings
- ✓ Plaster walls

FORT BLISS BUILDINGS 1 AND 115

Building 115 1911- Barracks

Building 1 1906 Hospital

ST. JULIENS CREEK ANNEX Buildings 61 and 168

Building 61 1917 - Warehouse

Building 168 1941 - Warehouse

F.E.WARREN AIR FORCE BASE (NHL) BUILDINGS 222 AND 323

Building 222 1906-1909 Barracks

Building 323 1906-1909 Stables

DoD Building Treatment Terms

- "Adaptive reuse & rehabilitation" are terms of art outside DoD
- The DoD term for "major rehabilitation" is "modernization"
- Modernization means: "the alteration or replacement of facilities solely to implement new or higher standards to accommodate new functions or to replace a building component that typically lasts more than 50 years."
- This study compares the costs and GHG of modernization with new construction

Building Scenarios

Sustainment/Status Quo

• Formulated for measuring baseline energy consumption

Demolition and New Construction

• LEED Silver certifiable construction – 2009 LEED for New Construction and Major Renovations

Full Modernization with Strict Application of Historic Preservation Standards (HPS)

- Full modernization with a strict application of Historic Preservation Standards (HPS) and other DoD facility design standards
- LEED Silver

Full Modernization with Strict Application of AT/FP

- Full rehabilitation/modernization but with strict application of Antiterrorism/ Force Protection requirements through building hardening, seismic and other DoD facility design standards
- LEED Silver

Applicable design standards include:

- ✓ Whole Building Design
- ✓ UFC 1-200-01 General Building Requirements
- ✓ UFC 4-610-01 Administrative Facilities
- ✓ UFC 1-900-01 Selection of Methods for the Reduction, Reuse and Recycling of Demolition Waste
- ✓ UFC 3-310-04 Seismic Design for Buildings
- DoD Minimum Antiterrorism Force Protection Standards for Buildings
- Secretary of Interior's Standards for Rehabilitation of Historic Buildings

GHG Calculators

Scope 1: Direct energy use on site

• World Resources Institute, GHG Protocol

Scope 2: Purchased energy not controlled onsite

• EPA eGRID

Scope 3: New building materials

- Athena Institute, EcoCalculator
- Economic Input-Output Life Cycle Assessment Model (EIO-LCA)

Scope 3: Transportation for demolition and waste disposal

• World Resources Institute, GHG Protocol

GHG SCOPE CALCULATOR

CO2 analysis for FEW 222-02: Demo and New Construction

FOUNDATION	S AND FOOTINGS					121,059
Foundation Wall	Cast-in-place concrete (R-7.5 XPS Continuous insulation)	-	Sq ft	8.92	Athena	-
	Cast-in-place concrete (R-7.5 EPS Continuous insulation)	5,130	Sq ft	8.73	Athena	44,785
	Concrete block (R-7.5 XPS Continuous insulation)	-	Sq ft	15.33	Athena	-
	Concrete block (R-7.5 EPS Continuous insulation)	-	Sq ft	15.14	Athena	-
Foundation Slab	4" Poured Concrete Slab	10,530	Sq ft	4.06	Athena	42,752
Footing	Poured Concrete Footing		Volume (yd3)	338.61	Athena	33,522
Concrete Repairs						
	Epoxy/adhesives for concrete repairs	-	\$	1.18	EIO-LCA	-
	Concrete leveling	-	\$	1.190	EIO-LCA	-

- Athena EcoCalculator is primary source, supplemented by EIO-LCA
- Need for standardizing cost estimate categories with carbon calculators
- Athena updating its calculator in response to this study

Findings: Cost Effectiveness

Pre-War Buildings can be cost effective compared to new construction on a TOC basis (w/ and w/o factoring GHG)

✓ **Example:** Building 115 at Fort Bliss:

	Life Cycle Cost				
Installation/Building/Project Alternative		Present Value GHG (a)	% Difference from New Construction		
Fort Bliss					
Building 115					
FTBL 115-02: Demolition and New Construction	\$	4,956,278	NA		
FTBL 115-03: Modernization with HPS	\$	3,791,391	-23.5% (b		
FTBL 115-04: Modernization with Full AT/FP	\$	4,009,546	-19.1% (b		
Notes:					
(a) Incorporates CO2e monetary value on a per MT t	oasis				
(b) A abias and AEO(ND)/ Coast Daduation Target	=				
Sources: Seraph LCC; BAE Urban Economics, Inc.	2012				

Findings: Energy Performance

- ✓ Modernization of Pre-War Buildings can achieve comparable levels of energy consumption as new construction at LEED Silver level
- "Original design intelligence" features contribute to existing building performance
- ✓ **Example:** Building 222 at F.E. Warren:

	MT CO2e Emissions (a)						
Installation/Building/Project Alternative (b)	Scope 1	% Difference from New Construction	Scope 2	% Difference from New Construction			
F.E. Warren							
Building 222							
FEW 222-02: Demolition and New Construction	5.0	NA	6,121	NA			
FEW 222-03: Modernization with HPS	3.2	-36.9%	6,063	-0.9%			
FEW 222-04: Modernization with AT/FP	5.6	11.2%	6,072	-0.8%			

Sources: Seraph LCC; BAE Urban Economics, Inc., 2012.

Findings: Total GHG Impacts

- ✓ On a life-cycle GHG basis, Pre-War Buildings generate less total GHG compared to new construction
- ✓ GHG savings from initial construction (Scope 3) is the driver of this result
- ✓ **Example:** Building 222 at F.E. Warren:

	MT CO2e Emissions (a)						
Installation/Building/Project Alternative (b)	Scope 3	% Difference from New Construction	TOTAL	% Difference from New Construction			
F.E. Warren							
Building 222							
FEW 222-02: Demolition and New Construction	2,320	NA	8,445	NA			
FEW 222-03: Modernization with HPS	1,070	-53.9%	7,136	-15.5%			
FEW 222-04: Modernization with AT/FP	1,446	-37.7%	7,524	-10.9%			

Sources: Seraph LCC; BAE Urban Economics, Inc., 2012.

Findings: Monetized GHG Impacts

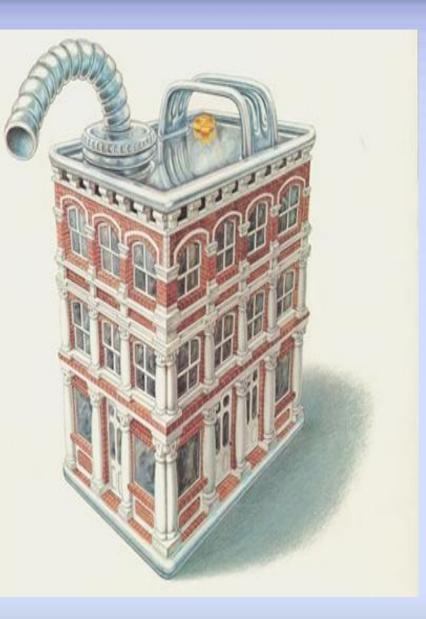
- Adding monetized GHG impacts reflects true "economic cost" of construction but does not have a significant impact on TOC results
- Putting a monetary value of GHG emissions raises construction costs by 1.7% to 3%
- ✓ **Example:** Building 1 at Fort Bliss:

Table X: Performance Objective #3: Reduction in NPV Cost Attributable to GHG Savings

			Contribution of GHG to NPV Life Cycle Cost Reduction				
Installation/Building/Project Alternative		NPV Life Cycle Costs with Monetized GHG (a)		V of Life cle CO2e	fron	fference n New struction	GHG Difference as % of Total New Construction NPV
Fort Bliss							
Building 1							
FTBL 001-02: Demolition and New Construction	\$	9,592,548	\$	277,641		NA	NA
FTBL 001-03: Modernization with HPS	\$	8,282,166	\$	243,725	\$	(33,916)	-0.354%
FTBL 001-04: Modernization with AT/FP	\$	8,777,667	\$	254,887	\$	(22,754)	-0.237%

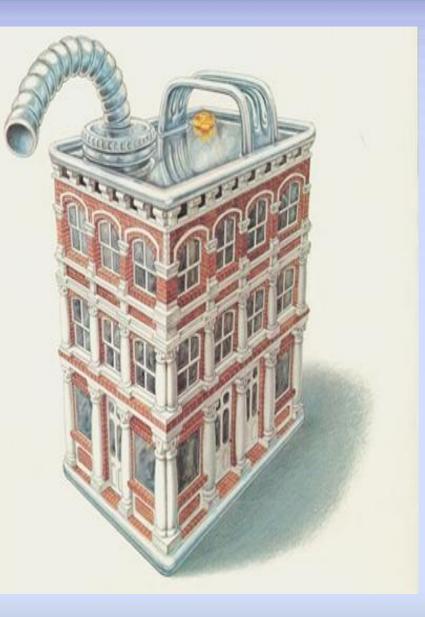
Notes:

(a) Incorporates CO2e monetary value on a per MT basis.


Sources: Seraph LCC; BAE Urban Economics, Inc., 2012.

Findings: Replication of Demonstration

- No off-the shelf carbon calculator that integrates
 Scope 1, 2, & 3 emissions
- Existing calculators oriented to new construction, not historic rehabilitation or modernization
- Need easy cross-walk between cost estimation systems and carbon calculators
- ✓ Conclusion: not ready for "prime time"


Findings

- DoD's Pre-War masonry buildings are an underutilized resource for meeting DoD GHG carbon reduction goals
- ATFP and Progressive Collapse requirements tend to be rigidly and prescriptively applied, raising construction costs and introducing additional Scope 3 GHG emissions
- Prior modernization treatments result in loss of original energy saving design features in Pre-War Buildings
- Differences in GHG in alternatives resulted from the amount of new building materials introduced and transportation of demolition debris

More Findings

- Cost estimates and construction bid requests should include materials quantities in addition to costs to evaluate and validate GHG impacts.
- Design professionals with practical experience with archaic building materials and systems are critical to the development of accurate planning level specifications
- GHG emission tradeoffs of proposed new materials and building options should be evaluated early in the conceptual design process

Recommendations

- ✓ Incorporate life-cycle GHG emissions analysis into DoD MILCON and SRM programs
- More emphasis on existing buildings as viable project alternative to meet mission requirements
- More Emphasis on Existing Buildings as Viable Project Alternative
 3 GHG emissions
- ✓ Observation of prior modernization treatments that result in loss of original energy saving design features in Pre-War Buildings
- ✓ Conclusion: not ready for "prime time"

Recommendations

- Incorporate life-cycle GHG emissions analysis into DoD MILCON and SRM programs
- ✓ Invest in formulation of carbon calculator system
- Place more emphasis on existing buildings as viable project alternatives to meet mission requirements
- ✓ Identify characteristic strengths and vulnerabilities by class of building
- ✓ Place more emphasis on existing buildings to meet DoD energy reduction goals
- Avoid modernization treatments that result in loss of original energy saving design features in Pre-War Buildings

Next Steps

- Formulate an installation master planning tool that provides risk-adjusted cost benefit analysis of alternative ATFP compliance treatments addressing site wide vs. building specific ATFP compliance issues
- Determine if modernization of Cold War buildings would produce different results
- Integrate Co2e metric into MILCON project TOC life-cycle analysis on 1391s

Adding GHG as a Factor in MILCON Decision-making

DoD Form 1391

1. COMPONENT		FY MILITARY CONSTRUCTION PROJECT DATA			REPORT CONTROL SYMBOL DD-A&T(A)1610		
3. INSTALLATION AND LOCATION		4. PROJEC	4. PROJECT TITLE				
. PROGRAM ELEMENT 6. CATEGORY CODE		7. PROJEC	T NUMBER	8. PROJECT COST (\$000)			
				Net CO2 Chang	re + (-)		
). COST ESTIMATES			i i		cost		
	ITEM	U/M	QUANTITY	UNIT COST	(\$000)		
					0.00		
					0.00		
					. 0.00		
					0.00		
					0.00		

A change in metrics to provide incentives

QUESTIONS, PLEASE!

MORE INFORMATION?

Cherilyn Widell, Principal, Seraph LLC cwidell809@yahoo.com 443-480-2862

David Shiver, Principal, BAE Urban Economics, Inc. dshiver@bae1.com 510-547-9380

Report Website: <u>http://serdp-estcp.org/Program-Areas/Energy-and-Water/(list)/1/(active)/no</u>

Forthcoming February 2013