

NASA's Human Space Exploration Capability Driven Framework

**Briefing to the National Research Council
Committee on Human Spaceflight**

Technical Panel

March 27, 2013

Jason Crusan, Director, Advanced Exploration Systems
Human Exploration and Operations Mission Directorate • NASA Headquarters

Overview

Setting the stage:

- Policy
- Capability Driven Framework
- Common Capability Challenges
- Strategic Knowledge Gaps

Later, a closer look at the technical challenges:

- Crew health medical, and safety (Steve Davison, NASA HQ)
- Habitation and destination systems (John Connolly, NASA JSC; Robyn Carrasquillo, NASA MSFC)
- In-space propulsion and space power (Les Johnson, NASA MSFC)
- Robotics and autonomous systems (Rob Ambrose, NASA JSC)
- Entry, descent, and landing (Michelle Munk, NASA LaRC)
- Deep-space extravehicular activities (EVA) (Mike Hembree, NASA JSC)

U.S. Law: Authorization, Appropriation, Budget

President Obama at KSC – April 15, 2010

“Early in the next decade, a set of crewed flights will test and prove the systems required for exploration beyond low Earth orbit. And by 2025, we expect new spacecraft designed for long journeys to allow us to begin the first-ever crewed missions beyond the Moon into deep space. So we’ll start -- we’ll start by sending astronauts to an asteroid for the first time in history. By the mid-2030s, I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow.”

- **NASA Authorization Act of 2010 & 2012 Appropriations**
 - Bipartisan support for human exploration beyond low Earth orbit, signed by President Barak Obama
- **The law authorizes:**
 - Extension of the International Space Station until at least 2020
 - Support for a commercial space transportation industry
 - Development of a Multi-purpose Crew Vehicle and heavy lift launch capabilities
 - A “flexible path” approach to space exploration opening up vast opportunities including near-Earth asteroids (NEA), moon, and Mars
 - New space technology investments to increase the capabilities beyond low Earth orbit
- **FY13 President’s Budget Request**
 - Asteroid by 2025, Mars orbit by mid-2030s

Capability Driven Framework

Strategic Principles for Incremental Building of Capabilities

Six key strategic principles to provide a sustainable program:

1. Executable with current ***budget with modest increases***.
2. Application of ***high Technology Readiness Level*** (TRL) technologies for near term, while focusing research on technologies to address challenges of future missions
3. ***Near-term mission*** opportunities with a defined cadence of compelling missions providing for an incremental buildup of capabilities for more complex missions over time
4. Opportunities for ***US Commercial Business*** to further enhance the experience and business base learned from the ISS logistics and crew market
5. ***Multi-use*** Space Infrastructure
6. Significant ***International participation***, leveraging current International Space Station partnerships

Human Exploration Design Reference Missions

Initial Exploration Missions	Extending Reach Beyond LEO	Into The Solar System	Exploring Other Worlds	Planetary Exploration
<i>ISS Utilization</i>				
		SLS/ORION (EM1, Uncrewed Mission)	SLS/ORION (EM2, Crewed Mission)	
			DRM Crewed Mission to Asteroid	
			DRM Crewed NEA 3 SLS Class Mission	
			DRM Crewed Mars Moons Mission	
			Crewed Mars Orbit Mission	DRM
			Crewed Mars Surface	DRM
<p><u>Note:</u> Design Reference Missions serve to define bounding cases of capabilities required to conduct missions.</p> <p>They are intended to serve as a framework for understanding the capabilities and technologies that may be needed, but are not specific actual missions to be conducted.</p>				
Updated Design Reference Missions – Late FY2013				

Elements Required By Potential Destination

Phase	Capability	Potential Required Element	For Potential Destinations			
			L1/L2	Asteroid	Mars Orbit / Moons	Mars Surface
Getting There	BEO Access	Space Launch System (SLS)	X	X	X	X
	Crew	Orion	X	X	X	X
	High Thrust/Near Earth	Cryo Propulsion Stage (CPS)	X	X	Option	Option
	Low Thrust/Near Earth	Solar Electric Propulsion (SEP)	Option	Option	Option	Option
	High Thrust/Beyond LEO	Nuclear Thermal Propulsion (NTP)	Option	Option	Option	Option
	Low Thrust/Beyond LEO	Nuclear Electric Propulsion (NEP)	Option	Option	Option	Option
	Habitation	Habitat	Option	X	X	X
	Descent	EDL / Landers				X
Working There	Habitation	Habitat				X
	Micro-g Sortie and Surface Mobility	Robotics and Mobility		X	Option	X
	In Situ Resource Utilization	In-Situ Resource Utilization (ISRU)				X
	Surface Power	Fission Surface Power System				X
	EVA (nominal)	EVA Suits	X	X	X	X
Coming Home	Ascent	Ascent Vehicle				X
	Crew Return	Orion	X	X	X	X

Note:

X – Required Elements/Capabilities for these potential destinations

Option – Element/Capability may be needed or multiple options could exist to enable missions for that specific potential destination or could be for verification for future needs.

Common Capabilities Identified for Exploration

Capability Driven Human Space Exploration

Human Exploration of Mars
The “Horizon Destination”

Architecture Common Capabilities (Mission Needs)

Low Earth Orbit
Crew and Cargo
Access

Human -
Robotic
Mission Ops

Adv. In-Space
Propulsion

Habitation

Ground
Operations

Beyond Earth
Orbit Crew and
Cargo Access

EVA

Robotics &
Mobility

Crew Health &
Protection

Technologies, Research, and Science

Autonomous
Mission
Operations

Avionics

Communication /
Navigation

ECLSS

Entry, Descent
and Landing

In-Situ
Resource
Utilization

Power and Energy
Storage

Thermal

Radiation
Protection

SKGs Measurements /
Instruments and
Sensors

Future Mission Capability Development with Focus on Near Term Cadence of Missions

		Initial Exploration Missions	Extending Reach Beyond LEO	Into The Solar System	Exploring Other Worlds	Planetary Exploration
Capabilities	LEO Cargo and Crew Access	→				
	BEO Access (Capsule, LV, and CPS)	→				
	Ground Ops	→				
	Advanced In-Space Propulsion	→				
	EVA	→				
	Habitation	→				
	Robotics & Mobility	→				
	Human-Robotic Mission Ops	→				
	Crew Health & Protection	→				
Technologies	Autonomous Mission Operations	→				
	Avionics	→				
	Communications and Nav.	→				
	ECLSS	→				
	Entry, Decent and Landing	→				
	ISRU	→				
	Power and Energy Storage	→				
	Radiation	→				
	Thermal	→				
SKGs	Instruments and Sensors	→				
Possible Missions Enabled		ISS Exp., EFT-1, EM-1, EM-2	Asteroid Mission Sample Returns EM-3, EM-4 etc...	Crew to Asteroid	Mars Orbit Mars Moons	Mars Surface
Robotic i.e. MSL, OSIRIS-Rex, Mars 2020						
Each mission makes incremental progress in advancing our capabilities to enable additional potential missions.						

Near Term
Pre-Formulation

DRMS

International
Space Station
Testing Critical
to Advancement
of Capabilities

Future Human Space Exploration Missions

Integrated Capability Schedule Example

- Flight system development for large human systems is 5-8 years
 - Timeline varies across destinations, flight systems, and technology programs
- New technologies incorporated into spacecraft design at PDR if TRL 6 or greater
 - Early incorporation of new technologies and data sets reduces mission risk
- Planetary mechanics may limit launch opportunities and transit windows
- Developing integrated capabilities dependent on mission design, technology readiness and resolving data gaps

NASA Set of Vetted Strategic Knowledge Gaps

- **To inform mission/system planning and design and near-term Agency investments**
 - Human Spaceflight Architecture Team (HAT) Destination Leads were asked to identify the data or information needed that would reduce risk, increase effectiveness, and aid in planning and design
 - The data can be obtained on Earth, in space, by analog, experimentation, or direct measurement
- **NASA's Analysis/Assessment Groups devoted considerable time to assessing SKGs**
 - External assessment groups vetted and refined the draft SKGs from HAT and identified pertinent measurements that would fill the identified gaps
 - As part of the Mars Program Planning Group, Mars-related SKGs were further evaluated with respect to the formulation of future robotic Mars science-driven missions and their support for human exploration goals.
- **The Strategic Knowledge Gaps (SKGs) were further assessed:**
 - Provide NASA's foundation for achieving an internationally developed and accepted set of integrated and prioritized SKGs through the International Space Exploration Coordination Group's (ISECG) Strategic Knowledge Assessment Team
 - ISECG's SKG-Assessment Team developed and applied an algorithm to prioritize SKGs within and across destinations
- **The SKGs will provide a framework for coordinating key measurements by international robotic missions to support human exploration and will be incorporated into the Global Exploration Roadmap 2.0**

SKGs are publicly available at: <http://www.nasa.gov/exploration/library/skg.html>

Note Other 2013 Deliverables Include:

Integrated Strategic Knowledge Gaps – NET October

Global Exploration Roadmap (GER) 2.0 – NET July

SKGs: Common Themes and Some Observations

- **There are common themes across potential destinations (not in priority order)**
 - The three R's for enabling human missions
 - Radiation
 - Regolith
 - Reliability
 - Geotechnical properties
 - Volatiles (i.e., for science, resources, and safety)
 - Propulsion-induced ejecta
 - In-Situ Resource Utilization (ISRU)/Prospecting
 - Operations/Operability (all destinations, including transit)
 - Plasma Environment
 - Human health and performance (critical, and allocated to HRP)
- **Some Observations**
 - The required information is measurable and attainable
 - These measurements do not require “exquisite science” instruments but could be obtained from them
 - Filling the SKGs requires a well-balanced research portfolio
 - Remote sensing measurements, in-situ measurements, ground-based assets, and research & analysis (R&A)
 - Includes science, technology, and operational experience

ISECGB and the Global Exploration Roadmap

- **Consistent with existing policy and the NASA Strategic Plan, human exploration beyond low-Earth orbit will be an international effort with many space agencies contributing**
 - Current partners, New partners
- **An effective, non-binding coordination mechanism has been established to advance concepts of mutual interest**
 - The ISECGB and its Global Exploration Roadmap (GER)
- **The non-binding GER enables agency discussions on important topics such as**
 - Common goals and objectives for exploration
 - Advancing long-range mission scenarios and architectures which lead to sustainable human missions to Mars
 - Opportunities for near-term coordination and cooperation on preparatory activities

Updated GER 2.0 is expected to be complete in NET July 2013

The Future of Human Space Exploration

- One-way transit times to destinations

Human Spaceflight Deep Space Challenge Examples

In Space Propulsion
and Space Power

Crew Health,
Medical, and Safety

Robotics and
Autonomous
Systems

Entry, Descent and
Landing

Habitation Systems and
Destination Systems, esp
ECLSS and Space Radiation,
*

Deep Space
EVA