
NRC
NRA on Autonomy

Dave	
 Vos,	
 Ph.D.	

August	
 28,	
 2013	

Systems	
 Level	
 Perspec>ve	
 on	
 Autonomy	

Relevant Vos Background
• MIT	
 Aero/AStro	
 Ph.D.	
 1992.	
 	

•  World’s	
 first	
 successful	
 Autonomous	
 Unicycle	
 Robot	

•  Founder,	
 CEO,	
 CTO	
 Athena	
 Technologies,	
 Inc.	
 Acquired	
 by	
 Rockwell	
 Collins	

2008.	
 Control,	
 Nav	
 and	
 Guidance	
 Systems	
 specialists	

•  UAS	
 Solu>ons	

•  Cer>ficated	
 Light	
 Sport	
 Avia>on	
 Engine	
 Controls	
 for	
 BRP	
 Rotax	
 engine	

•  Manned	
 Avia>on	
 solu>ons	

•  Example	
 UAS:	
 US	
 Army	
 Shadow	
 Nav/Guidance/control	
 system	

•  Thousands	
 of	
 flights	
 per	
 month	

•  Opera>onal	
 hours	
 passed	
 I	
 Million	
 in	
 2011	

•  Automated	
 Launch,	
 Flight,	
 Mission,	
 Recovery	
 (tailhook	
 autoland)	

•  These	
 are	
 Personal	
 Comments	
 and	
 Thoughts	
 on	
 Autonomy	
 	

•  Not	
 affiliated	
 with	
 Athena	
 or	
 Rockwell	
 Collins	

Levels of Autonomy
All must Work as Advertised at Top Level

Autonomous	
 Damage	
 Tolerance	

Rockwell	
 Collins	
 &	
 DARPA	
 2009	

Baby	
 Steps	

MIT	
 1992	

Robo>c	
 Unicycle	
 tracks	
 Heading	
 and	
 Speed	
 Inputs	
 Push	
 Bu`on	
 to	
 launch	
 flight	

Autonomous	
 takeoff,	
 execute	
 flight	
 plan,	
 recover	
 from	
 damage,	
 	

reroute	
 to	
 autonomous	
 landing	

A word on “Autonomous”

•  FAA	
 Currently	
 is	
 Allergic	
 to	
 the	
 word	
 “Autonomous”.	
 We	
 need	
 to	
 help	

clarify	

•  Two	
 main	
 Perspec>ves	
 (in	
 English)	

•  Determinis>c	
 systems:	
 The	
 resul>ng	
 ac>on	
 due	
 to	
 a	
 s>mulus	
 is	
 always	

predictable	

•  non-­‐Determinis>c	
 systems:	
 The	
 resul>ng	
 ac>on	
 due	
 to	
 a	
 s>mulus	
 is	
 not	

necessarily	
 predictable	

This	
 Discussion	
 Contemplates	
 Determinis>c	
 Autonomous	
 Systems	

Some Recent Events – Manned and UAS
•  Air	
 France	
 Airbus	
 A330	
 en-­‐route	
 from	
 Rio	
 to	
 Paris	

•  Stall	
 From	
 38	
 ke	
 into	
 the	
 ocean	
 aeer	
 air	
 data	
 discrepancies	

•  Autonomous	
 system	
 could	
 have	
 made	
 this	
 a	
 non-­‐event	

•  Airbus	
 A320	
 in	
 Hudson	
 river	

•  Precious	
 >me	
 spent	
 figuring	
 out	
 what	
 had	
 happened	

•  Only	
 remaining	
 realis>c	
 op>on	
 was	
 land	
 in	
 the	
 river	
 -­‐	
 an	
 heroic	
 accomplishment	
 under	
 the	
 circumstances	
 	

•  Autonomous	
 system	
 could	
 very	
 likely	
 have	
 landed	
 back	
 on	
 the	
 runway	
 at	
 LaGuardia	

•  UAS:	
 Predator	
 B	
 crash	
 -­‐	
 US	
 Border	

•  Switching	
 crew	
 consoles	
 confused	
 the	
 vehicle	
 configura>on	

•  Autonomous	
 system	
 cross-­‐checks	
 in	
 GCS	
 could	
 have	
 prevented	
 the	
 mishap	
 	

	

•  Boeing	
 777	
 San	
 Francisco	

•  Slow	
 &	
 low	
 approach	

•  Autonomous	
 system	
 could	
 have	
 ensured	
 a	
 safe	
 landing 	
 	

We Must Commit to the Advertised Level of
Autonomy

•  Design	
 Philosophy	
 is	
 cri>cal,	
 Either	
 we	
 assume	

•  Crew	
 are	
 Superhuman	

•  Make	
 no	
 mistakes	

•  Can	
 resolve	
 any	
 complex	
 situa>on	
 arbitrarily	
 quickly	
 whilst	
 performing	
 other	
 tasks	

•  Or	

•  Crew	
 are	
 Human	

•  Will	
 make	
 mistakes	

•  Able	
 to	
 manage	
 the	
 system,	
 but	
 not	
 be	
 the	
 system	

•  Don’t	
 expect	
 Crew	
 to	
 Mul>-­‐task	
 and	
 Figure	
 out	
 Mul>-­‐Level	
 Problems	
 and	

Determine	
 Emergency	
 Solu>ons	
 in	
 Real	
 Time	

•  We	
 must	
 make	
 the	
 level	
 of	
 automated	
 backup	
 and	
 recovery	
 support	
 the	
 adver>sed	

level	
 of	
 Autonomy	

•  We	
 cannot	
 require	
 a	
 Superhuman	
 Crew	
 to	
 resolve	
 lower	
 level	
 problems	

Need Full Envelope Designs, Not Just
the Allowable Normal Envelope

•  For	
 Example:	

•  All-­‐agtude	
 body	
 axis	
 control	
 to	
 keep	
 the	
 trajectory	
 on	
 track	
 regardless	
 of	

agtude	
 	

•  “Up-­‐elevator”	
 can	
 have	
 dire	
 consequences	
 if	
 inadvertently	
 inverted	
 at	
 low	
 al>tude	

•  Graceful	
 degrada>on	
 of	
 systems	
 when	
 limits	
 are	
 exceeded	

	

Darpa	
 and	
 Rockwell	
 Collins	
 2010	

Autonomous	
 all-­‐agtude	
 flight	
 	

Certification Requirements Drive
Architecture Decisions
• Current	
 Cer>fica>on	
 philosophy	
 allows	
 Dependence	
 on	
 Superhumans	

as	
 ul>mate	
 backup	
 to	
 resolve	
 complex	
 failure	
 scenarios	

•  FMECA-­‐based	
 Systems	
 Engineering	
 must	
 be	
 employed	
 and	
 iterated	

upon	
 to	
 reach	
 architecture	
 design	

•  Assume	
 the	
 Crew	
 is	
 a	
 normal	
 human,	
 ie	
 not	
 very	
 good	
 at	
 simultaneous	
 real	

>me	
 mul>-­‐tasking	
 and	
 problem	
 solving	

•  Build	
 appropriate	
 levels	
 of	
 redundancy,	
 including	
 analy>c	
 redundancy	
 to	

resolve	
 problems	
 automa>cally	
 and	
 keep	
 flying	

•  Enable	
 Crew	
 to	
 Coordinate	
 Emergency	
 Ac>ons	
 vs	
 Solving	
 Emergency	

Problems	
 	

System Level Avionics, SW, Algorithm
Design process
•  Set	
 Top	
 Level	
 Func>onal	
 Requirements	
 Including	
 Requisite	
 Levels	
 of	

Autonomy	
 for	
 Flight	
 Plans	
 or	
 Missions	

• Define	
 No>onal	
 architecture	
 and	
 algorithms	

• Use	
 FMECA	
 to	
 establish	
 adequacy	
 in	
 terms	
 of	
 failures	

•  Iterate	
 un>l	
 converged	

• Prove	
 in	
 Test	
 (Simula>ons/Simulators,	
 HWIL	
 etc)	

•  Iterate	
 un>l	
 converged	

•  Flight	
 test	

•  Iterate	
 un>l	
 converged	

	

Software Development Challenges

•  Safety	
 Cri>cal	
 SW	
 Development	
 is	
 S>ll	
 a	
 Rela>vely	
 Immature	

Engineering	
 Discipline	

• By	
 Defini>on,	
 SW	
 enables	
 Designers	
 to	
 “fiddle	
 Infinitely”.	
 Death	
 to	
 a	

business	

•  SLOC	
 (Lines	
 of	
 Source	
 Code)	
 cost	
 can	
 range	
 from	
 $75	
 to	
 many	
 $100s	

per	
 line	

•  Can	
 rapidly	
 become	
 Cost	
 Prohibi>ve	

•  Tough	
 business	
 decisions	
 need	
 to	
 be	
 made	

•  Adjust	
 fielded	
 level	
 of	
 autonomy	
 accordingly	

•  Oeen	
 leads	
 to	
 ul>mately	
 depending	
 on	
 a	
 Superhuman	
 crew	

• Cost,	
 Simplicity	
 and	
 Reduced	
 SLOC	
 count	
 go	
 hand-­‐in-­‐hand	

	

Summary: Some Key Themes for
Autonomy
• Commit	
 to	
 Autonomy	

•  Focus	
 on	
 the	
 System	
 Architecture	
 and	
 Necessary	
 levels	
 of	
 Autonomy	

to	
 meet	
 System	
 Requirements	

•  Fundamentally	
 driven	
 by	
 solid	
 Systems	
 Engineering	
 	
 	

•  Each	
 level	
 of	
 Autonomy	
 needs	
 to	
 be	
 delivered	
 without	
 need	
 for	
 Crew	

to	
 be	
 Superhuman	
 in	
 cases	
 of	
 Failures	
 or	
 Mode	
 selec>on	
 	

Summary: Some Needed Technologies
and Tools for Enabling Broad use of
Autonomy
• Mature	
 Systems	
 Engineering	
 and	
 Soeware	
 Engineering	
 Disciplines	
 	

•  Structured	
 System	
 Architecture	
 Design	
 Techniques	
 and	
 Tools	

•  Safety	
 Cri>cal	
 Systems	
 Design	
 through	
 Systems	
 Engineering	
 and	
 use	
 of	

FMECA	
 as	
 	
 driver	

•  Versa>le	
 Requirements	
 Tracking	
 Tools	
 and	
 Techniques	

•  Automated	
 tes>ng	
 Tools	
 and	
 Techniques	

•  High	
 Reliability	
 Automa>c	
 code	
 genera>on	
 	

•  Tools	
 for	
 Tracking	
 and	
 Mapping	
 of	
 Test	
 Plans	
 and	
 Results	
 to	
 Requirements	

• Methods	
 for	
 Reducing	
 System	
 Complexity	

	

