NRC
NRA on Autonomy

Dave Vos, Ph.D.
August 28, 2013

Systems Level Perspective on Autonomy

Relevant Vos Background

* MIT Aero/AStro Ph.D. 1992.

* World’s first successful Autonomous Unicycle Robot

* Founder, CEO, CTO Athena Technologies, Inc. Acquired by Rockwell Collins
2008. Control, Nav and Guidance Systems specialists

e UAS Solutions
 Certificated Light Sport Aviation Engine Controls for BRP Rotax engine

e Manned Aviation solutions

* Example UAS: US Army Shadow Nav/Guidance/control system

* Thousands of flights per month
e Operational hours passed | Million in 2011
 Automated Launch, Flight, Mission, Recovery (tailhook autoland)

* These are Personal Comments and Thoughts on Autonomy
* Not affiliated with Athena or Rockwell Collins

Levels of Autonomy
All must Work as Advertised at Top Level

Baby Steps Autonomous Damage Tolerance
MIT 1992 Rockwell Collins & DARPA 2009

Robotic Unicycle tracks Heading and Speed Inputs ~ Push Button to launch flight
Autonomous takeoff, execute flight plan, recover from damage,

reroute to autonomous landing

A word on “Autonomous”

* FAA Currently is Allergic to the word “Autonomous”. We need to help
clarify

* Two main Perspectives (in English)

* Deterministic systems: The resulting action due to a stimulus is always
predictable

* non-Deterministic systems: The resulting action due to a stimulus is not
necessarily predictable

This Discussion Contemplates Deterministic Autonomous Systems

Some Recent Events — Manned and UAS

Air France Airbus A330 en-route from Rio to Paris
» Stall From 38 kft into the ocean after air data discrepancies

e Autonomous system could have made this a non-event

Airbus A320 in Hudson river

* Precious time spent figuring out what had happened
* Only remaining realistic option was land in the river - an heroic accomplishment under the circumstances

* Autonomous system could very likely have landed back on the runway at LaGuardia

UAS: Predator B crash - US Border

* Switching crew consoles confused the vehicle configuration
e Autonomous system cross-checks in GCS could have prevented the mishap

Boeing 777 San Francisco

* Slow & low approach
e Autonomous system could have ensured a safe landing

Bad Luck or Human Error or Inadequate Systems Level Autonomy?

We Must Commit to the Advertised Level of
Autonomy

* Design Philosophy is critical, Either we assume

* Crew are Superhuman
* Make no mistakes
* Can resolve any complex situation arbitrarily quickly whilst performing other tasks

e Or
* Crew are Human

* Will make mistakes
e Able to manage the system, but not be the system

* Don’t expect Crew to Multi-task and Figure out Multi-Level Problems and
Determine Emergency Solutions in Real Time

* We must make the level of automated backup and recovery support the advertised
level of Autonomy

 We cannot require a Superhuman Crew to resolve lower level problems

Need Full Envelope Designs, Not Just
the Allowable Normal Envelope

* For Example:

 All-attitude body axis control to keep the trajectory on track regardless of
attitude

e “Up-elevator” can have dire consequences if inadvertently inverted at low altitude
e Graceful degradation of systems when limits are exceeded

Darpa and Rockwell Collins 2010
Autonomous all-attitude flight

Certification Requirements Drive
Architecture Decisions

* Current Certification philosophy allows Dependence on Superhumans
as ultimate backup to resolve complex failure scenarios

* FMECA-based Systems Engineering must be employed and iterated
upon to reach architecture design

* Assume the Crew is a normal human, ie not very good at simultaneous real
time multi-tasking and problem solving

* Build appropriate levels of redundancy, including analytic redundancy to
resolve problems automatically and keep flying

* Enable Crew to Coordinate Emergency Actions vs Solving Emergency
Problems

System Level Avionics, SW, Algorithm
Design process

* Set Top Level Functional Requirements Including Requisite Levels of
Autonomy for Flight Plans or Missions

* Define Notional architecture and algorithms

e Use FMECA to establish adequacy in terms of failures
* |lterate until converged

* Prove in Test (Simulations/Simulators, HWIL etc)

* I[terate until converged

* Flight test

* I[terate until converged

Software Development Challenges

e Safety Critical SW Development is Still a Relatively Immature
Engineering Discipline

* By Definition, SW enables Designers to “fiddle Infinitely”. Death to a
business

* SLOC (Lines of Source Code) cost can range from $75 to many $100s
per line
* Can rapidly become Cost Prohibitive

* Tough business decisions need to be made
* Adjust fielded level of autonomy accordingly
* Often leads to ultimately depending on a Superhuman crew

* Cost, Simplicity and Reduced SLOC count go hand-in-hand

Summary: Some Key Themes for
Autonomy

* Commit to Autonomy

* Focus on the System Architecture and Necessary levels of Autonomy
to meet System Requirements
 Fundamentally driven by solid Systems Engineering

* Each level of Autonomy needs to be delivered without need for Crew
to be Superhuman in cases of Failures or Mode selection

Summary: Some Needed Technologies
and Tools for Enabling Broad use of
Autonomy

* Mature Systems Engineering and Software Engineering Disciplines
 Structured System Architecture Design Techniques and Tools

 Safety Critical Systems Design through Systems Engineering and use of
FMECA as driver

* Versatile Requirements Tracking Tools and Techniques

* Automated testing Tools and Techniques

* High Reliability Automatic code generation

* Tools for Tracking and Mapping of Test Plans and Results to Requirements

* Methods for Reducing System Complexity

