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Some Important Trends in Control in the Last Decade

(Online) Optimization-based control
e Increased use of online optimization (MPC/RHC)
e Use knowledge of (current) constraints & environment to
allow performance and adaptability
Layering and architectures
e Command & control at multiple levels of abstraction
e Modularity in product families via layers
e Platform-based design; contract-based design
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Cyber-physical systems (CPS) "
e Systems that combine information systems/physics

e Better coupling between computer science, controls, 3
communications and networking

=]

Formal methods for analysis, design and synthesis — i e

e Formal methods from computer science, adapted for
cyberphysical systems

e Horizontal & vertical contracts for layering, modularity

Components — Systems — Enterprise

e Movement of control techniques from “inner loop” to
“outer loop” to entire enterprise (eg, supply chains)
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Modern Networked Control System Architecture

(following P. R. Kumar, UIUC/Texas A&M)

External Environment
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Command:FIFO

Inner Loop Traj:Causal Mode and Online State
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Management Optimization Server
9 (RHC, MILP) (KF, MHE)
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; 100 Kb/s

Goal/Req’s Attention & Memory and
Management Awareness Learning
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"DARPA

\%‘ Recent Example: Alice (DGCO7)  @zenines

&
Alice
e 300+ miles of fully autonomous driving
e 8 cameras, 8 LADAR, 2 RADAR
® 12 Core 2 Duo CPUs + Quad Core
® ~75 person team over 18 months

Software
e 25 programs with ~200 exec threads

e 237,467 lines of executable code
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Sensor Detect/Track

Application of existing controls technology in Alice

e Receding horizon (optimization-based) control for path
planning with obstacles; ~100 msec iteration rate

e Multi-layer sensor fusion: sensor “bus” allows different
combinations of sensors to be used for perceptors +
fusion at “map” level

e | ow level (inner loop) controls: PID w/ anti-windup (but
based on a feasible trajectory from RHC controller)
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Highly modular
Rapidly adaptable
Constantly viable
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(3 S Planning Hourglass
Protocol stack based architecture
® Planners uses directives/responses to communicate

e Each layer is isolated from the ones above and below

e Had 4 different path planners under development, two
different traffic planners.

Engineering principle: layered protocols isolate interactions

e Define each layer to have a specific purpose; don’t rely
on knowledge of lower level details

e Important to pass information back and forth through
the layers; a fairly in an actuator just generate a
change in the path (and perhaps the mission)

e Higher layers (not shown) monitor health and can
act as “hormones” (affecting multiple subsystems)

Hybrid system control methodology

e Finite state automata control interactions between layers
and mode switches (intersection, off road, etc)

e Formal methods for analysis of control protocol correctness (post race)

Mission
Planner

Traffic
Planner

Path
Planner

Y A

Path
Follower

Actuation
Interface

- Eg: make sure that you never have a situation where two layers are in conflict
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Analysis vs Design: Optimization-Based Control

Nonlinear design Local design state| | Actual

« global nonlinearities state / —
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Offline design + analysis — online design
e Traditional: design (simple) controller, analyze performance, check with constraints
e Modern: specify performance and constraints, design trajectory/control to satisfy
® Problem: overall space too large; online optimization allows simplification
e Example of a “correct by construction” technique. Cost function = Lyapunov function

Links to complexity management
e Correct by construction allows “automatic” verification
e Still limited by our ability to formally specify behavior, computational tractability, etc
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Challenge: Verification of Control Logic

Unknown Paused Disabled ieQi
P e bl Estop Disable R Mission
- initial stale on star - depress brakes - depress brakes PI
- reject all directives - send trans disable anner

excepl sleering = reject all direclives
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~ start timer on entry Timecut - normal operating state - reject all directives
= transition afler 5 sec - process all direclives = transition when shifl
is completed
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Function: respond to control commands + DARPA pause/emergency stop

Path
Follower

Verification using temporal logic (Lamport’s TLC, TLA+)
e Model follower, Actuation Interface, DARPA, accModule, transModule in TLC
e Shared variables: state, estop, acc, acc_command, trans, trans_command

Actuation
Interface

Verify the following properties
e [((estop = DISABLE) = ()[(state = DISABLED & acc =-1))

e [((estop = PAUSE) = ()(state = PAUSED v estop = DISABLE))

e [((estop = RUN) = ((state = RUNNING v state = RESUMING))

e [((state = RESUMING) = ()(state = RUNNING v estop = DISABLE v estop = PAUSE))
e []((state € {DISABLE, PAUSED, RESUMING, SHIFTING} = acc = -1)
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Lessons Learned from Alice

Online optimization solves nonlinear control problems

® Modern computation allows constrained optimization
problems to be solved online

e Solutions exist for situations with more limited computation
(multi-parametric optimization)

Layered control architectures allow more efficient design
e Allows for “separation of concerns” between subsystems —
Ission

® Provided a very modular design, capable of rapid (human- Planner
controlled) adaptation

Traffic

Verification of control protocols is necessary, but hard Flanner
e Traditional methods of simulation and testing not sufficient Path
e Formal methods not easily applied to “hand designed” ':v'ag:r

control protocols ‘Path
Follower
New tools for “correct by construction” design are needed b

e Temporal logic(s) are powerful language for specifying ioiuation
desired behavior (combined with traditional measures)

e New tools are becoming available, but not yet ready for
prime time
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Current Work: Design of Control Protocols

roadblock

3. cplan for parking zone \
2. cplan for executing turn
(initiated after stop + car check)

4’ new cplan after
detecting roadblock

travel direction | | |$3| |

|
OLICE +

omunidirsctional travel

1. cplan leading to intersection 4. initial cplan to checkpoint

(stope at end)

How do we design control protocols that manage behavior
e Mixture of discrete and continuous decision making
® Insure proper response external events, with unknown timing
e Design input = specification + model (system + environment)
e Design output = finite state machine implementing logic

Approach: rapidly explore all trajectories satisfying specs

e Search through all possible actions and events, discarding
executions that violate a set of (LTL) specifications

® |ssue: state space explosion (especially due to environment)
e Good news: recent results in model checking for class of specs
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Python Toolbox

Temporal Logic Planning (TuLiP) toolbox

http://tulip-control.sourceforge.net

e GR(1), LTL specs
e Nonlin dynamics

e Supports discret-
ization via MPT

e Control protocol
designed using JTLV

e Receding horizon
compatible

> ,{ Continuous
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Partition iti
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Applications of TuLiP in the last year
e Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
e Distributed camera networks - cooperating cameras to track people in region
e Electric power transfer - fault-tolerant control of generator + switches + loads
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Example: Autonomous Navigation in Urban Environment

Traffic rules R T L Re
e No collisions with other vehicles — _l
e Stay in the travel lane unless there is an e +
obstacle blocking the lane @ B -— - TR I
e Only proceed through an intersection ¢ *

when it is clear +‘_4|T

Assumptions
e Obstacle may not block a road

e Obstacle is detected before the vehicle
gets too close to it

e Limited sensing range

e Obstacle does not disappear when the

vehicle is in its vicinity SN Q\W& Wg/&
e Obstacles may not span more than a Wit Wi Wi-1

certain number of consecutive cells in 7

the middle of the road

e Each intersection is clear infinitely often

e Each of the cells marked by star and its adjacent cells are not occupied by an
obstacle infinitely often
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Example: Autonomous Navigation in Urban Environment

Time:104.30s

Mission
Planner

. y— |
I A Traffic
- Planner
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Path
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e JTLV returns 900 state FSA ‘I\:tt:;;igg

in about 1.5 seconds I

e & = start in proper lane if no |
obstacle present * no collision

Use response mechanism to replan if no feasible solution exists

® Trajectory planner sees blockage and fails to find strategy satisfying specification
® Trajectory planner reports failure to goal generator

e Goal generator re-computes a (high level) path to the goal state
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Potential challenges for autonomy in civilian aviation

Two comparisons to previous areas of interest
e Control of UAVs in military operations (AFSAB study, 2003)
e Challenges in control of autonomous vehicles in urban environments

References
e “UAVs in Perspective,” Air Force. Scientific Advisory Board Summer Study, June 2003

e M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Autonomous Driving in
Urban Environments: Approaches, Lessons and Challenges,” Philosophical
Transactions of the Royal Society - A, Oct. 2009.
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UAVs in Perspective (2003 Study)

High Visual Range

Air Combat

Far term ——>

Mid term ——>

Near term —>

Mission Complexity

Key mission
areas

Additional
mission areas Low

Low Threat Risk regh

¢ With the possible exception of air to air combat, UAVs are capable of executing all
current air force missions

e Advances in autonomy and human-system integration technologies are required to
conduct increasingly complex missions

e The challenge is to optimally integrate human and machine abilities
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Campbell, Egerstedt, How, M
Phil Trans Roy Soc A, 2010

Challenges in Autonomous Driving

Systems integration
® |ntegration of complex sensing, actuation and decision-making subsystems
® Need to insure assumptions are consistent across algorithms (and teams)

Prediction and trust
e How do we anticipate the actions of other systems (autonomous or human-controlled)
¢ How do we make sure that autonomous systems behave in “understandable” manner

Interactions between agents
e Exploit the ability for autonomous (or semi-autonomous) systems to communicate
e Unfortunately, cannot assume that all vehicles will cooperate...

Learning
e Can autonomous systems learn from prior mistakes, other vehicles, online data?

Scaling up
¢ How do we “scale up” (speed, complexity) from operation in controlled environments

Verification and validation
e How do we verify and certify that the system can operate safely and robustly
e Particularly hard since we know that this cannot be done 100% of the time
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