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Goals
• Important trends in control over the last decade
• Networked control systems for robotics and autonomy
• Potential challenges for autonomy in civilian aviation
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Some Important Trends in Control in the Last Decade
(Online) Optimization-based control
• Increased use of online optimization (MPC/RHC)

• Use knowledge of (current) constraints & environment to 
allow performance and adaptability

Layering and architectures
• Command & control at multiple levels of abstraction

• Modularity in product families via layers

• Platform-based design; contract-based design

Cyber-physical systems (CPS)
• Systems that combine information systems/physics

• Better coupling between computer science, controls, 
communications and networking

Formal methods for analysis, design and synthesis
• Formal methods from computer science, adapted for 

cyberphysical systems

• Horizontal & vertical contracts for layering, modularity

Components → Systems → Enterprise
• Movement of control techniques from “inner loop” to 

“outer loop” to entire enterprise (eg, supply chains)
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Recent Example: Alice (DGC07)
Alice
• 300+ miles of fully autonomous driving
• 8 cameras, 8 LADAR, 2 RADAR
• 12 Core 2 Duo CPUs + Quad Core
• ~75 person team over 18 months

Software
• 25 programs with ~200 exec threads
• 237,467 lines of executable code
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Application of existing controls technology in Alice
• Receding horizon (optimization-based) control for path 

planning with obstacles; ~100 msec iteration rate
• Multi-layer sensor fusion: sensor “bus” allows different 

combinations of sensors to be used for perceptors + 
fusion at “map” level
• Low level (inner loop) controls: PID w/ anti-windup (but 

based on a feasible trajectory from RHC controller)

DGC07 System Architecture
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• Rapidly adaptable
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Protocol stack based architecture
• Planners uses directives/responses to communicate
• Each layer is isolated from the ones above and below
• Had 4 different path planners under development, two 

different traffic planners.

Engineering principle: layered protocols isolate interactions
• Define each layer to have a specific purpose; don’t rely

on knowledge of lower level details
• Important to pass information back and forth through

the layers; a fairly in an actuator just generate a 
change in the path (and perhaps the mission)
• Higher layers (not shown) monitor health and can 

act as “hormones” (affecting multiple subsystems)

Hybrid system control methodology
• Finite state automata control interactions between layers

and mode switches (intersection, off road, etc)
• Formal methods for analysis of control protocol correctness (post race)
- Eg: make sure that you never have a situation where two layers are in conflict

Planning Hourglass
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Analysis vs Design: Optimization-Based Control

Offline design + analysis ➞ online design
• Traditional: design (simple) controller, analyze performance, check with constraints
• Modern: specify performance and constraints, design trajectory/control to satisfy
• Problem: overall space too large; online optimization allows simplification
• Example of a “correct by construction” technique.  Cost function = Lyapunov function

Links to complexity management
• Correct by construction allows “automatic” verification
• Still limited by our ability to formally specify behavior, computational tractability, etc
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Challenge: Verification of Control Logic

Function: respond to control commands + DARPA pause/emergency stop

Verification using temporal logic (Lamport’s TLC, TLA+)
• Model follower, Actuation Interface, DARPA, accModule, transModule in TLC

• Shared variables: state, estop, acc, acc_command, trans, trans_command

Verify the following properties

• ¨((estop = DISABLE) ⇒ ◊¨(state = DISABLED ∧ acc = -1))

• ¨((estop = PAUSE) ⇒ ◊(state = PAUSED ∨ estop = DISABLE)) 

• ¨((estop = RUN) ⇒ ◊(state = RUNNING ∨ state = RESUMING))

• ¨((state = RESUMING) ⇒ ◊(state = RUNNING ∨ estop = DISABLE ∨ estop = PAUSE))

• ¨((state ∈ {DISABLE, PAUSED, RESUMING, SHIFTING} ⇒ acc = -1)
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Lessons Learned from Alice
Online optimization solves nonlinear control problems
• Modern computation allows constrained optimization 

problems to be solved online
• Solutions exist for situations with more limited computation 

(multi-parametric optimization)

Layered control architectures allow more efficient design
• Allows for “separation of concerns” between subsystems
• Provided a very modular design, capable of rapid (human-

controlled) adaptation

Verification of control protocols is necessary, but hard
• Traditional methods of simulation and testing not sufficient
• Formal methods not easily applied to “hand designed” 

control protocols

New tools for “correct by construction” design are needed
• Temporal logic(s) are powerful language for specifying 

desired behavior (combined with traditional measures)
• New tools are becoming available, but not yet ready for 

prime time
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Current Work: Design of Control Protocols

How do we design control protocols that manage behavior
• Mixture of discrete and continuous decision making
• Insure proper response external events, with unknown timing
• Design input = specification + model (system + environment)
• Design output = finite state machine implementing logic

Approach: rapidly explore all trajectories satisfying specs
• Search through all possible actions and events, discarding 

executions that violate a set of (LTL) specifications
• Issue: state space explosion (especially due to environment)
• Good news: recent results in model checking for class of specs
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Temporal Logic Planning (TuLiP) toolbox
http://tulip-control.sourceforge.net

Python Toolbox
• GR(1), LTL specs
• Nonlin dynamics
• Supports discret-

ization via MPT
• Control protocol

designed using JTLV
• Receding horizon

compatible

Applications of TuLiP in the last year
• Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
• Distributed camera networks - cooperating cameras to track people in region
• Electric power transfer - fault-tolerant control of generator + switches + loads
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Traffic rules
• No collisions with other vehicles
• Stay in the travel lane unless there is an 

obstacle blocking the lane
• Only proceed through an intersection 

when it is clear

Assumptions
• Obstacle may not block a road
• Obstacle is detected before the vehicle 

gets too close to it
• Limited sensing range
• Obstacle does not disappear when the 

vehicle is in its vicinity
• Obstacles may not span more than a 

certain number of consecutive cells in 
the middle of the road
• Each intersection is clear infinitely often
• Each of the cells marked by star and its adjacent cells are not occupied by an 

obstacle infinitely often
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Example: Autonomous Navigation in Urban Environment
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Use response mechanism to replan if no feasible solution exists
• Trajectory planner sees blockage and fails to find strategy satisfying specification
• Trajectory planner reports failure to goal generator
• Goal generator re-computes a (high level) path to the goal state
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Example: Autonomous Navigation in Urban Environment
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Potential challenges for autonomy in civilian aviation
Two comparisons to previous areas of interest
• Control of UAVs in military operations (AFSAB study, 2003)
• Challenges in control of autonomous vehicles in urban environments

References
• “UAVs in Perspective,” Air Force. Scientific Advisory Board Summer Study, June 2003
• M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray, “Autonomous Driving in 

Urban Environments: Approaches, Lessons and Challenges,” Philosophical 
Transactions of the Royal Society - A, Oct. 2009.
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Challenges in Autonomous Driving
Systems integration
• Integration of complex sensing, actuation and decision-making subsystems
• Need to insure assumptions are consistent across algorithms (and teams)

Prediction and trust
• How do we anticipate the actions of other systems (autonomous or human-controlled)
• How do we make sure that autonomous systems behave in “understandable” manner

Interactions between agents
• Exploit the ability for autonomous (or semi-autonomous) systems to communicate
• Unfortunately, cannot assume that all vehicles will cooperate...

Learning
• Can autonomous systems learn from prior mistakes, other vehicles, online data?

Scaling up
• How do we “scale up” (speed, complexity) from operation in controlled environments

Verification and validation
• How do we verify and certify that the system can operate safely and robustly
• Particularly hard since we know that this cannot be done 100% of the time
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